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Preface

Some 15 years and more have passed since the foreword to the first
edition of Modal Testing: Theory and Practice was written. In some
ways, little has changed since then concerning the origins of the
subject, and as a result, much of the original book has survived the
intervening years almost intact. At the same time, there have been
great developments in the subject, with the result that some of today’s
technology would be largely unrecognisable to the practitioner of the
early 1980s. It is to embrace these developments that the present book
has been written, and it is because of the tremendous growth in the
subject - not only in the relevant theory, but also in the practice of the
subject and in the ever-widening range of applications — that this
second edition is much longer than its predecessor.

It has to be admitted that the subject has become so large that one
cannot hope to cover everything in a single book. For example, the topic
of model updating - effectively introduced as part of the subject to the
community in the first edition - has been the subject of perhaps 500-800
published papers in the past 15 years and a book in the last 5 years.
Modal analysis methods have become a very advanced topic with
sophisticated numerical analysis procedures which are beyond the
scope of most modal testing practitioners. A huge number of papers
have been published since the first edition of Modal Testing: there have
been 15 IMACs (with about 400 papers in each), plus 10 ISMAs (with
perhaps 200-250 papers presented at each) plus other more specialised
conferences so that there must be well over 10000 papers published on
modal testing and analysis since the first edition of this book appeared.
It would be foolish to pretend that this new edition can have absorbed
any more than a fraction of this volume of literature but, nevertheless,
it does seek to bring the work somewhat more up to date. This book is
still aimed at the serious practitioner, as well as the student to some of
the “new” structural dynamics analysis methods. It may also still serve
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as a useful basis to the researcher in one or other of the various
disciplines, of which the modal analysis and the model updating areas
are two good examples where for each topic a whole new subject has
grown out of part of the main one. For those seeking such advanced
expositions, other texts now take on the story in greater detail.

In talking of references, and noting the vast number of relevant
papers that have appeared in recent years, it should also be noted that
in this text we have sought to provide the reader with a judicious
selection of reference material which is not overwhelming by its very
quantity. It is accepted that such a selection process is relatively
subjective but the concerned reader can find literature reviews in many
of the different areas covered by this book in some of the references that
are cited here.

The refinements and additions to the text which result in the
present edition have grown out of 15 years of using the text as the basis
of a series of over 100 short courses, typically of between 20 and 40
hours concentrated instruction, that have been presented by the author
in many countries around the world. In the time between these two
editions of Modal Testing, the modal analysis community has grown to
use the singular value decomposition as a routine tool, to use MIMO
testing techniques on a standard basis, to expect much more
quantitative performance from the applications of the results of its
modal tests, and to be more ambitious in these applications it seeks to
address. Reliability and speed of testing methods is demanded by
industrial and commercial pressures which lead us towards greater use
of simulation, test planning and ‘virtual testing’ in order that the tests
we do conduct provide the quality and selection of data that are
required to solve the problems being tackled.

However, behind all this progress and evolution is a re-assertion of
the need for testing in structural dynamics in general and for modal
testing in particular. One might have thought, 15 years ago, that by the
end of the century the tremendous growth in computing technology
would have rendered experimental testing more or less obsolete.
However, even though our projections in 1984 of what would be possible
by 2000 have almost certainly proved to be conservative, the need for
testing is as deep rooted as ever. There are probably two main reasons
for this - and it may be appropriate to bear these in mind throughout
any testing exercise that one is involved in - and these are (1) that
there are some parameters, quantities or effects that are effectively
unpredictable, and likely to remain so for the foreseeable future, such
as damping, friction and fatigue properties, as well as excitation forces
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- and (2) no matter how much we improve our structural dynamic
modelling and prediction capabilities (which is certainly a direct
consequence of the dramatic advances in our computing technologies),
we are always driven to seek better results. When we succeed in
predicting a structure’s natural frequencies to within 5%, or a response
level to within 50%, then those targets will move to ones demanding an
accuracy of 1%, or 10% in response, and so it will continue, and the only
reference against which these predictions can be assessed is one that
comes from experimental observation of what really happens in
practice. And lest we imagine that we are ‘close’ to meeting the
expectations of our designers in our ability to predict the dynamic
behaviour of ‘real’ structures with sufficient reliability to permit paper
designs which are “right first time”, we have only to recall the current
situation regarding the performance of our analysis tools at predicting
the vibration response of a typical engineering structure which is
composed of an assembly of separate components and subjected to
various excitation forces generated by or in the operating environment
for that structure to realise that we are still far from attaining the
aspirations of our subject.

Hence, it is believed that the experimental branches of structural
dynamics should be seen to have a very secure and long-term future,
clearly justifying the investments that have been made in certain areas,
and especially the one treated here of modal testing.
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CHAPTER 1

Overview

L.l INTRODUCTION TO MODAL TESTING
The experimental study of structural dynamics has always provided a
major contribution to our efforts to understand and to control the many
vibration phenomena encountered in practice. Today, at the turn of the
millennium, even with the formidable growth in the use and capacity of
computing power that we have witnessed in recent decades, the need
for experimental measurement is as compelling as ever. Since the very
early days of awareness of structural vibration, experimental
observations have been necessary for the major objectives of
(a) determining the nature and extent of vibration response levels in
operation and (b) verifying theoretical models and predictions of the
various dynamic phenomena which are collectively referred to as
‘vibration’. There is also a third requirement, (c), which is for the
measurement of the essential material properties under dynamic
loading, such as damping capacity, friction and fatigue endurance.

Structural vibration problems continue to present a major hazard
and design limitation for a very wide range of engineering products
today. First, there are a number of structures, from turbine blades to
suspension bridges, for which structural integrity is of paramount
concern, and for which a thorough and precise knowledge of the
dynamic characteristics is essential. Then, there is an even wider set of
structural components or assemblies for which vibration is directly
related to performance, either by virtue of causing temporary
malfunction during excessive motion or by creating disturbance or
discomfort, including that of noise. For all these examples, it is
important that the vibration levels encountered in service or operation
be anticipated and brought under satisfactory control.

The two major vibration measurement objectives indicated above
represent two corresponding types of test. The first is one where
vibration forces or, more usually, responses are measured during
operation’ of the machine or structure under study, while the second is
a test where the structure or component is vibrated with a known
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excitation, often out of its normal service environment. This second type
of test is generally made under much more closely-controlled conditions
than the former and consequently yields more accurate and detailed
information. This type of testing — including both the data acquisition
and its subsequent analysis — is nowadays called ‘Modal Testing’ and is
the subject of the following text. While we shall be defining the specific
quantities and parameters used as we proceed, it is perhaps
appropriate to state clearly at this point just what we mean by the term
‘Modal Testing’. It is used here to encompass ‘the processes involved in
testing components or structures with the objective of obtaining a
mathematical description of their dynamic or vibration behaviour’. The
form of the ‘mathematical description’ or model varies considerably
from one application to the next: it can be an estimate of natural
frequency and damping factor in one case and a full mass-spring¬
dashpot model for the next.

Although the name is relatively new, the principles of modal testing
were laid down many years ago. These have evolved through various
phases when descriptions such as ‘Resonance Testing’ and ‘Mechanical
Impedance Methods’ were used to describe the general area of activity.
One of the more important milestones in the development of the subject
was provided by the paper in 1947 by Kennedy and Pancu [1]*. The
methods described there found application in the accurate
determination of natural frequencies and damping levels in aircraft
structures and were not out-dated for many years, until the rapid
advance of electronic measurement and analysis techniques in the
1960s. This activity paved the way for more precise measurements and
thus more powerful applications. A paper by Bishop and Gladwell in
1963 [2] described the state of the theory of resonance testing which, at
that time, was considerably in advance of its practical implementation.
Another work of the same period but from a totally different viewpoint
was the book by Salter [3] in which a relatively non-analytical approach
to the interpretation of measured data was proposed. Whilst more
demanding of the user than today’s computer-assisted automation of
the same tasks, Salter’s approach rewarded its practitioners with a
considerable physical insight into the vibration of the structure thus
studied. However, by 1970 there had been major advances in
transducers, electronics and digital analysers and the current
techniques of modal testing were established. There are a great many
papers which relate to this period, as workers made further advances
and applications, and a bibliography of several hundred such references
now exists [4,5]. The following pages set out to bring together the major
features of all aspects of the subject to provide a comprehensive guide to

References are listed in pages 545-550.
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both the theory and the practice of modal testing, including the more
powerful applications.

In the almost two decades since the first edition of this text was
written, there has been a veritable explosion of activity and
publications in the subject. While much of this activity relates to
advanced methods and applications (and is thus largely outside the
scope of this book), nevertheless there have been a number of other
texts aimed at explaining the basics of Modal Testing to a wider and
wider audience. Notable amongst these are recent books by Maia et al
[6], from the KUL in Leuven [7] and, in their respective languages, from
Germany [8], China [9] and Romania [10], Another important set of
documents have been published in the UK by the Dynamic Testing
Agency (DTA) in the form of (a) a Primer (an introductory overview for
beginners and managers)[11], and (b) a Handbook of Best Practice, a
detailed step-by-step guide to each of the individual procedures
involved in performing a modal test [12], More general texts which refer
to modal testing, but which are not exclusively concerned with it,
include the book by McConnell [13],

In addition to these specific works, there have been several
thousand papers presented at the annual IMAC conferences since 1982
[14], and the bi-annual ISMA conferences in Belgium (since 1975)[15],
as well as those published in several journals [16-18]. The present text
is intended to be largely self-contained and so it is not planned to
provide an extensive list of references. Readers who wish to be apprised
of the full literature are advised to consult the proceedings of the
aforementioned conferences, as well as [6],

1.2 APPLICATIONS OF MODAL TESTING
Before embarking on both summarised and detailed descriptions of the
many aspects of the subject, it is important that we raise the question of
why modal tests are undertaken. There are many applications to which
the results from a modal test may be put and several of these are, in
fact, quite powerful. However, we must remember that no single test or
analysis procedure is ‘best’ for all cases and so it is very important that
a clear objective is defined before any industrial test is undertaken so
that the optimum methods or techniques may be used. This process is
best dealt with by considering in some detail the following questions:
what is the desired outcome from the study of which the modal test is a
part? and, in what form are the results required in order to be of
maximum use?

First, then, it is appropriate to review the major application areas in
current use. In all cases, it is true to say that a modal test is
undertaken in order to obtain a mathematical model of the structure
but it is in the subsequent use of that model that the differences arise.
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(a) Perhaps the single most commonly used application is the
measurement of a structure’s vibration properties in order to compare
these with corresponding data produced by a finite element or other
theoretical model. This application is often borne out of a need or desire
to validate the theoretical model prior to its use for predicting response
levels to complex excitations, such as shock, oi' other further stages of
analysis. It is generally felt that corroboration of the major modes of
vibration by tests can provide reassurance of the basic validity of the
theoretical model which may then be put to further use with confidence.
For this specific application, all that we require from the test are: (i)
accurate estimates of natural frequencies and (ii) descriptions of the
mode shapes using just sufficient detail and accuracy to permit their
identification and correlation with those from the theoretical model. At
this stage, accurate mode shape data are not essential. It is generally
not possible to ‘predict’ the damping in each mode of vibration from a
theoretical model and so there is nothing with which to compare
measurements of modal damping obtained from the tests. However,
such information is useful as it can be incorporated into the theoretical
model, albeit as an approximation, prior to that being called upon to
predict specific response levels (which are often significantly influenced
by the damping).

(b) Many cases of experiment-theory comparison stop at the stage of
obtaining a set of results by each route and simply comparing them.
Sometimes, an attempt will be made to adjust or correct the theoretical
model in order to bring its modal properties closer into line with the
measured results. In the past, this was usually done using a trial-and-
error approach but nowadays more formal reconciliation procedures
known as model updating, or model refinement, are available.

A logical and necessary evolution of the procedure outlined above is
the correlation, rather than the comparison, of experimental and
theoretical results. By this is meant a process whereby the two sets of
data are combined, quantitatively, in order to identify specifically the
causes of the discrepancies between predicted and measured properties.
Such an application is clearly more powerful than its less ambitious
forerunner but, equally, will be more demanding in terms of the
accuracy required in the data taken from the modal test. Specifically, a
much more precise description of the mode shape data (the
‘eigenvectors’) is required than is generally necessary to depict or
describe the general shape in pictorial form..

(c) The next application area to be reviewed is that of using a modal
test in order to produce a mathematical model of a component which
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may then be used to incorporate that component into a structural
assembly. This is often referred to as a ‘substructuring process’ and is
widely used in theoretical analysis of complex structures. Here again, it
is a fully quantitative model that is sought — with accurate data
required for natural frequencies, modal damping factors and mode
shapes — and now has the added constraint that all modes must be
included simultaneously. It is not sufficient to confine the model to
certain individual modes — as may be done for the previous
comparisons or correlations — since out-of-range modes will influence
the structure’s dynamic behaviour in a given frequency range of
interest for the complete assembly. Also, it is not possible to ignore
certain modes which exist in the range of interest but which may
present some difficulties for measurement or analysis. This application
is altogether more demanding than the previous ones and is often
underestimated, and thus inappropriately tackled, with the result that
the results do not always match up to expectations or, indeed, to those
which are attainable with greater care.

(d) There is a variant of the previous application which is becoming
of considerable interest and potential and that is to the generation of a
model which may be used for predicting the effects of modifications to
the original structure, as tested. Theoretically, this falls into the same
class of process as substructuring and has the same requirements of
data accuracy and quantity. However, sometimes the; modification
procedure involves relatively minor changes to the original design, in
order to fine tune a structure’s dynamics, and this situation can relax
the data requirements somewhat.

One particular consideration which applies to both this and the
previous case concerns the need for information about rotational
degrees of freedom (RDOFs), i.e. moments (as well as forces) and
rotational (i.e. angular) displacements (as well as translational ones).
These are automatically included in theoretical analyses but are
generally ignored in experimentally-based studies for the simple reason
that they are so much more difficult to measure. Nevertheless, they are
generally an essential feature in coupling or modification applications.

(e) A different application for the model produced by a modal test is
that of force determination. There are a number of situations where
knowledge of the dynamic forces causing vibration is required but
where direct measurement of these forces is not practical. For these
cases, one solution is offered by a process whereby measurements of the
response caused by the forces are combined with a mathematical
description of the transfer functions of the structure in order to deduce
the forces. This process can be very sensitive to the accuracy and
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appropriateness of the model used for the structure and so it is often
essential that the model itself be derived from measurements; in other
words, via a modal test.

(f) Lastly, in our review of applications, it is appropriate to note that
whereas the normal procedure is (a) to measure, (b) to analyse the
measured data and then (c) to derive a mathematical model of the
structure, there are some cases where this is not the optimum
procedure. The last step, (c), is usually taken in order to reduce a vast
quantity of actual measurements to a small and efficient data set
usually referred to as the ‘modal model’. This reduction process has an
additional benefit of eliminating small inconsistencies which will
inevitably occur in measured data. However, it is sometimes found that
the smoothing and averaging procedures involved in this step reduce
the validity of the model and in applications where the subsequent
analysis is very sensitive to the accuracy of the input data, this can
present a problem. Examples of this problem may be found particularly
in (e), force determination, and in (c), subsystem coupling. The solution
adopted is to generate a model of the test structure using ‘raw’
measured data — unsmoothed and relatively unprocessed — which, in
turn, may well demand additional measurements being made, and
additional care to ensure the necessary accuracy.

1.3 PHILOSOPHY OF MODAL TESTING
One of the major requirements of the subject of modal testing is a
thorough integration of three components:

(i) the theoretical basis of vibration;
(ii) accurate measurement of vibration; and
(iii) realistic and detailed data analysis.

There has in the past been a tendency to regard these as three different
specialist areas, with individual experts in each. However, the subject
we are exploring now demands a high level of understanding and
competence in all three areas and cannot achieve its full potential
without the proper and judicious mixture of the necessary skills.

For example: when taking measurements of excitation and response
levels, a full knowledge of how the measured data are to be processed
can be essential if the correct decisions are to be made as to the quality
and suitability of that data. Again, a thorough understanding of the
various forms and trends adopted by plots of frequency response
functions for complex structures can prevent the wasted effort of
analysing incorrect measurements: there are many features of these
plots that can be assessed very rapidly by the eyes of someone who
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understands their theoretical basis.
Throughout this work, we shall repeat and re-emphasise the need

for this integration of theoretical and experimental skills. Indeed, the
route chosen to develop and to explain the details of the subject takes
us first through an extensive review of the necessary theoretical
foundation of structural vibration. This theory is regarded as a
necessary prerequisite to the subsequent studies of measurement
techniques, signal processing and data analysis.

With an appreciation of both the theoretical basis (and if not with
all the detail straight away, then at least with an awareness that many
such details do exist), we can then turn our attention to the practical
side; to the excitation of the test structure and to the measurement of
both the input and response levels during the controlled testing
conditions of FRF measurements. Already, here, there is a bewildering
choice of test methods — harmonic, random, transient excitations, for
example — vying for choice as the ‘best’ method in each application. If
the experimenter is not to be left at the mercy of the sophisticated
digital analysis equipment now widely available, he or she must fully
acquaint him- or herself with the methods, limitations and implications
of the various techniques now widely used in this measurement phase.

Next, we consider the ‘analysis’ stage where the measured data
(almost invariably, frequency response functions) are subjected to a
range of curve-fitting procedures in an attempt to find the
mathematical model which provides the closest description of the
actually-observed behaviour. There are many approaches, or
algorithms, for this phase and, as is usually the case, no single one is
ideal for all problems. Thus, an appreciation of the alternatives is a
necessary requirement for the experimenter wishing to make optimum
use of his time and resources.

Often, though not always, an analysis may be conducted on each
measured curve individually. If this is the case, then there is a further
step in the process which we refer to as ‘Modelling’. This is the final
stage where all the measured and processed data are combined to yield
the most compact and efficient description of the end result — a
mathematical model of the test structure — that is practicable.

This last phase, like the earlier ones, involves some type of
averaging as the means by which a large quantity of measured data are
reduced to a (relatively) small mathematical model. This is an operation
which must be used with some care. The averaging process is a valid
and valuable technique provided that the data thus treated contain
random variations: data with systematic trends, such as are caused by
poor testing practices or non-linearities in the test structure, should not
be averaged in the same way. We shall discuss this problem later on.

Thus we have attempted to describe the underlying philosophy of
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our approach to modal testing and are now in a position to review the
highlights of the three main phases: theory, measurement and analysis
in order to provide a brief overview of the entire subject.

1.4 SUMMARY OF THEORY
In this and the following two sections an overview of the various aspects
of the subject will be presented. This will highlight the key features of
each area of activity and is included for a number of reasons. First, it
provides the serious student with a non-detailed review of the different
subjects to be dealt with, enabling him to see the context of each
without being distracted by the minutiae, and thus acts as a useful
introduction to the full study. Secondly, it provides him or her with a
breakdown of the subject into identifiable topics which are then useful
as milestones for the process of acquiring a comprehensive ability and
understanding of the techniques. Lastly, it also serves to provide the
non-specialist or manager with an explanation of the subject, trying to
remove some of the mystery and folklore which may have developed.

We begin with the theoretical basis of the subject since, as has
already been emphasised, a good grasp of this aspect is an essential
prerequisite for successful modal testing.

It is very important that a clear distinction is made between free
vibration and forced vibration analyses, these usually being two
successive stages in a full vibration analysis. As usual with vibration
studies, we start with the single degree-of-freedom (SDOF) system and
use this familiar model to introduce the general notation and analysis
procedures which are later extended to the more general multi degree-
of-freedom (MDOF) systems. For the SDOF system, a free vibration
analysis yields its natural frequency and damping factor, whereas a
particular type of forced response analysis, assuming a harmonic
excitation, leads to the definition of the frequency response function —
such as mobility, the ratio of velocity response to force input. These two
types of result are referred to as ‘modal properties’ and ‘frequency
response characteristics’ respectively and they constitute the basis of all
our studies. Before leaving the SDOF model, it is appropriate to
consider the form which a plot of the mobility (of other type of
frequency response function) takes. Three alternative ways of plotting
this information are shown in Fig. 1.1 and, as will be discussed later, it
is always helpful to seek the format which is best suited to the
particular application to hand.

Next we consider the more general class of systems which have
more than one degree-of-freedom. For these, it is customary that the
spatial properties — the values of the mass, stiffness and damper
elements which make up the model — be expressed as matrices. Those
used throughout this work are [M], the mass matrix, [A-] , the stiffness
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Fig. 1.1 Alternative formats for display of frequency response function
(FRF) of a single-degree-of-freedom (SDOF) system.
(a) Linear scales (Bode); (b) Logarithmic scales (Bode)
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Fig. 1.1 Alternative formats for display of frequency response function
(FRF) of a single-degree-of-freedom (SDOF) system.
(c) Complex plane (Nyquist plot)

matrix, [C] , the viscous damping matrix, and [D] , the structural or
hysteretic damping matrix. The first phase (of three) in the vibration
analysis of such systems is that of setting up the governing equations of
motion which, in effect, means determining the elements of the above
matrices. (This is a process which does exist for the SDOF system but is
often trivial.) The second phase is that of performing a free vibration
analysis using the equations of motion. This analysis produces first a
set of N natural frequencies and damping factors (N being the number
of degrees of freedom, or equations of motion) and secondly a matching
set of N ‘mode shape’ vectors, each one of these being associated with a
specific natural frequency and damping factor. The complete free
vibration solution is conveniently contained in two matrices, [A.2] and
[O] , which are again referred to as the ‘modal properties’ or,
sometimes, as the eigenvalue (natural frequency and damping) and
eigenvector (mode shape) matrices. One element from the diagonal
eigenvalue matrix (A.2) contains both the natural frequency and the
damping factor for the rth normal mode of vibration of the system while
the corresponding column, {$}r > fr°m the full eigenvector matrix, [0] ,
describes the shape (the relative displacements of all parts of the
system) of that same mode of vibration. There are several detailed
variations to this general picture, depending upon the type and
distribution of damping, but all cases can be described in the same
general way.
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The third and final phase of theoretical analysis is the forced
response analysis, and in particular that for harmonic (or sinusoidal)
excitation. By solving the equations of motion when harmonic forcing is
applied, we are able to describe the complete solution by a single
matrix, known as the ‘frequency response matrix’ [H(co)] , although
unlike the previous two matrix descriptions, the elements of this matrix
are not constants but are frequency-dependent, each element being
itself a frequency response (or mobility) function. Thus, element

represents the harmonic response, Xj , in one of the degrees of
freedom, j, caused by a single harmonic force, Fk , applied at a different
degree of freedom, k. Both these harmonic quantities are described
using complex algebra to accommodate the magnitude and phase
information, as also is Hj^ (co) . Each such quantity is referred to as a
frequency response function, or FRF for short.

The particular relevance of these specific response characteristics is
the fact that they are the quantities which we are most likely to be able
to measure in practice. It is, of course, possible to describe each
individual frequency response function in terms of the various mass,
stiffness and damping elements of the system but the relevant
expressions tend to be extremely complex for practical structures.
However, it transpires that the same expressions can be drastically
simplified if we use the modal properties instead of the spatial
properties and it is possible to write an expression for any FRF,
Hjk(n) , which has the general form:

X- N Ai.

rk r=1 -a

where X2r is the eigenvalue of the rth mode (its natural frequency and
damping factor combined); (the modal constant) is constructed
from {<|)}r ; jr is the element of the rth eigenvector {<|)}r (i.e. the
relative displacement at that DOF during vibration in the rth mode);
and IV is the number of degrees of freedom (or modes).

This expression forms the foundation of modal analysis: it shows a
direct connection between the modal properties of a system and its
response characteristics. From a purely theoretical viewpoint it
provides an efficient means of predicting response (by performing a free
vibration analysis first) while from a more practical standpoint, it
suggests that there may be means of determining modal properties
from FRFs which are amenable to direct measurement. Here again, it is
appropriate to consider the form which a plot of such an expression as
(1.1) will take, and some examples are shown in Fig. 1.2 which can be
deduced entirely from the equation itself, using different values for the
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Fig. 1.2 Typical FRF plots for multi-degree-of-freedom (MDOF) system,
(a) Bode plots
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25 Hz to 250 Hz

25 Hz to 250 Hz

FREQUENCY RANGE
25 Hz to 250 Hz

Fig. 1.2 Typical FRF plots for multi-degree-of-freedom (MDOF) system,
(b) Nyquist
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modal properties or coefficients in the expression.
Thus we find that by making a thorough study of the theory of

structural vibration, we are able to ‘predict’ what we might expect to
find if we make FRF measurements on actual hardware. Indeed, we
shall see later how these predictions can be quite detailed, to the point
where it is possible to comment on the likely quality of measured data.

We have outlined above the major aspects of the ‘theoretical route’
of vibration analysis. There are also a number of topics which need to
be covered dealing with aspects of signal processing, non-harmonic
response characteristics and non linear behaviour, but these may be
regarded as additional details which may be required in particular
cases while the above-mentioned items are fundamental and central to
any application of modal testing.

1.5 SUMMARY OF MEASUREMENT METHODS
In the previous section, we reviewed the major features of the
appropriate theory and these all led up to the frequency response
characteristics. Thus the main measurement techniques which must be
devised and developed are those which will permit us to make direct
measurements of the various FRF properties of the test structure.

In this review, we shall concentrate on the basic measurement
system used for single-point excitation, the type of test best suited to
FRF measurement, the main items of which are shown in Fig. 1.3.
Essentially, there are three aspects of the measurement process which
demand particular attention in order to ensure the acquisition of the
high-quality data which are required for the next stage — data
analysis. These are:

(i) the mechanical aspects of supporting and (correctly) exciting the
structure;

(ii) the correct transduction of the quantities to be measured — force
input and motion response; and

(iii) the signal processing which is appropriate to the type of test
used.

In the first category, we encounter questions as to how the testpiece
should be suspended, or supported, and how it should be excited.
Usually, one of three options is chosen for the support: free, or
unrestrained, (which usually means suspended on very soft springs);
grounded, which requires its rigid clamping at certain points; or in
situ, where the testpiece is connected to some other structure or
component which presents a non-rigid attachment. The choice itself will
often be decided by various, sometimes conflicting, factors. Amongst
these may be a desire to correlate the test results with theory
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Fig. 1.3 Basic components of FRF measurement system

and in this case it should be remembered that free boundaries are much
easier to simulate in the test condition than are clamped, or grounded
ones. Also, if tests are being made on one component which forms part
of an assembly, these may well be required for the free-free condition.

The mechanics of the excitation are achieved either by connecting a
vibration generator, or shaker, or by using some form of transient
input, such as a hammer blow or sudden release from a deformed
position. Both approaches have advantages and disadvantages and it
can be very important to choose the best one in each case.

Transducers are very important elements in the system as it is
essential that accurate measurements be made of both the input to the
structure and of its response. Nowadays, piezoelectric transducers are
widely used to detect both force and acceleration and the major
problems associated with them are to ensure that they interfere as little
as possible with the test structure and that their performance is
adequate for the ranges of frequency and amplitude of the test.
Incorrect transducer selection can give rise to very large errors in. the
measured data upon which all the subsequent analysis is based.

The FRF parameters to be measured can be obtained directly by
applying a harmonic excitation and then measuring the resulting
harmonic response. This type of test is often referred to as ‘sinewave
testing’ and it requires the attachment of a shaker to the structure. The
frequency range is covered either by stepping from one frequency to the
next, or by slowly sweeping the frequency continuously, in both cases
allowing quasi-steady conditions to be attained. Alternative excitation
procedures are now widely used. Transient (including burst signals)
periodic, pseudo-random or random excitation signals often replace the
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sine-wave approach and are made practical by the existence of complex
signal processing analysers which are capable of resolving the
frequency content of both input and response signals, using Fourier
analysis, and thereby deducing the mobility parameters required. A
further extension of this development is possible using impulsive or
transient excitations which may be applied without connecting a shaker
to the structure. All of these latter options offer the possibility of
shorter testing times but great care must be exercised in their use as
there are many steps at which errors may be incurred by incorrect
application. Once again, a sound understanding of the theoretical basis
— this time of signal processing — is necessary to ensure successful use
of these relatively advanced techniques.

As was the case with the theoretical review, the measurement
process also contains many detailed features which will be described
below. Here, we have just outlined the central and most important
topics to be considered. One final observation which must be made is
that in modal testing applications of vibration measurements, perhaps
more than many others, accuracy of the measured data is of paramount
importance. This is so because these data are generally to be submitted
to a range of analysis procedures, outlined in the next section, in order
to extract the results eventually sought. Some of these analysis
processes are themselves quite complex and can seldom be regarded as
insensitive to the accuracy of the input data. By way of a note of
caution, Fig. 1.4 shows the extent of variations which may be obtained
by using different measurement techniques on a particular test
structure [19]. Since that survey was carried out, there have been
further similar studies; two of particular note are (i) a survey which
proposed a ‘standard’ or ‘benchmark’ rectangular plate structure that
individual laboratories could acquire for themselves [20], and (ii) a
European survey of modal testing capabilities under GARTEUR
sponsorship, resulting in a contemporary assessment of the state-of-the-
art of the technology in the mid-to-late 1990s [21].

1.6 SUMMARY OF MODAL ANALYSIS PROCESSES
The third skill required for modal testing is concerned with the analysis
of the measured FRF data. This is quite separate from the signal
processing which may be necessary to convert raw measurements into
frequency responses. It is a procedure whereby the measured mobilities
are analysed in such a way as to find a theoretical model which most
closely resembles the behaviour of the actual testpiece. This process
itself falls into two stages: first, to identify the appropriate type of
model and second, to determine the appropriate parameters of the
chosen model. Most of the effort goes into this second stage, which is
widely referred to as ‘modal parameter extraction’ or, simply, as ‘modal
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Frequency <Hz)

Fig. 1.4 Various measurements on standard benchmark testpiece

analysis’.
We have seen from our review of the theoretical aspects that we can

‘predict’ or, better, ‘anticipate’ the form of the FRF plots for a multi-
degree-of-freedom system and we have also seen that these may be
directly related to the modal properties of that system. The great
majority of the modal analysis effort involves the matching or curve-
fitting an expression such as equation (1.1) above to the measured FRFs
and thereby finding the appropriate modal parameters.

A completely general curve-fitting approach is possible but
generally inefficient. Mathematically, we can take an equation of the
form

N
= £

r=l

Ar (1.2)

and curve-fit a set of measured values ..., etc. to
this expression so that we obtain estimates for the coefficients A1 , A2 ,
..., xf , A.2 > •••> etc. These coefficients are, of course, closely related to
the modal properties of the system. However, although such approaches
are made, they are inefficient and neither exploit the particular
properties of resonant systems nor take due account of the unequal
quality of the various measured points in the data set,

etc-, both °f which can have a significant influence on the



18

overall analysis process. Thus there is no single modal analysis method
but rather a selection, each being the most appropriate in differing
conditions.

One of the most widespread and useful approaches is that known as
the ‘Single-Degree-of-Freedom Curve-Fit’ or, often, the ‘Circle Fit’
procedure. This method uses the fact that at frequencies close to a
natural frequency, the FRF can often be approximated to that of a
single degree-of-freedom system plus a constant offset term (which
approximately accounts for the existence of other modes). This
assumption allows us to use the circular nature of a modulus/phase
polar plot (the Nyquist plot) of the frequency response function of a
SDOF system (see Fig. 1.1(c)) by curve-fitting a circle to just a few
measured data points, as illustrated in Fig. 1.5. This process can be
repeated for each resonance individually until the whole curve has been
analysed. At this stage, a theoretical regeneration of the FRF is possible
using the set of coefficients extracted, as illustrated in Fig. 1.6. More
recent versions of the same basic approach — the so-called ‘line-fit’
methods — exploit the straight-line (rather than circular) nature of the
FRF plot when presented as a reciprocal function.

These simple methods can be used for many of the cases
encountered in practice but they become inadequate and inaccurate
when the structure has modes which are ‘close’, a condition which is
identified by the lack of an obviously-circular section on the Nyquist
plot. Under these conditions it becomes necessary to use a more
complex process which accepts the simultaneous influence of more than
one mode. These latter methods are referred to as ‘MDOF curve-fits’
and are naturally more complicated and require more computation
effort but, provided the data are accurate, they have the capability of
producing more accurate estimates for the modal properties (or at least
for the coefficients in equation (1.2)).

In this subject, again, there are many detailed refinements but the
analysis process is always essentially the same: that of finding — by
curve-fitting — a set of modal properties which best match the response
characteristics of the tested structure. Some of the more detailed
considerations include: compensating for slightly non-linear behaviour;
simultaneously analysing more then one FRF and curve-fitting to
actual time histories (rather than the processed frequency response
functions).

As mentioned in the previous section on measurement techniques,
there have been attempts to assess the reliability and consistency of the
different modal analysis methods which are available. The most
comprehensive is probably the one run by the Swedish Vibration
Society (SVIB) whose results have been presented in reference [22].
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Fig. 1.5 Curve-fit to resonant FRF data

FREQUENCY (Hz)

Fig. 1.6 Regeneration of mobility FRF curve from curve-fit data
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1.7 REVIEW OF TEST PROCEDURES AND LEVELS
Having now outlined the major features of the three essential
ingredients for modal testing, it is appropriate to end this introduction
with a brief review of just how these capabilities are drawn together to
conduct a modal test.

The overall objective of the test is to determine a set of modal
properties for a structure. These consist of natural frequencies,
damping factors and mode shapes. The procedure consists of three
steps:

(i) measure an appropriate set of mobilities, or FRFs;
(ii) analyse these using appropriate curve-fitting procedures; and
(iii) combine the results of the curve-fits to construct the required

model. (In some modern implementations, (ii) and (iii) are
performed as a single process.)

Using our knowledge of the theoretical relationship between FRF
functions and modal properties, it is possible to show that an
‘appropriate’ set of FRFs to measure consists in most cases of just one
row or one column in the FRF matrix, [H(co)] . In practice, this either
means exciting the structure at one point and measuring responses at
all points or measuring the response at one point while the excitation is
applied separately at each point in turn. (This last option is most
conveniently achieved using a hammer or other non-contacting
excitation device.)

In practice, this relatively simple procedure will be embellished by
various detailed additions, but the general method is always as
described here.

As we consider each new modal test in some detail, we shall realise
that, while we shall always follow the same overall procedure, there
will be a different level of detail, or accuracy, required for each different
application. This realisation has been recognised and embodied in the
classification of five different Levels of Test in the Handbook published
by the DTA [12], These different levels can be defined as follows:

Level 0: estimation of natural frequencies and damping factors;
response levels measured at few points; very short test times.

Level 1: estimation of natural frequencies and damping factors; mode
shapes defined qualitatively rather than quantitatively.

Level 2: measurements of all modal parameters suitable for tabulation
and mode shape display, albeit un-normalised.
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Level 3: measurements of all modal parameters, including normalised
mode shapes; full quality checks performed and model usable
for model validation.

Level 4: measurements of all modal parameters and residual effects for
out-of-range modes; full quality checks performed and model
usable for all response-based applications, including
modification, coupling and response predictions.

Attention to the appropriate level of test required in each application
clearly constitutes an important part of the planning process.

1.8 TERMINOLOGY AND NOTATION
One final word by way of introduction to this important aspect of the
work: this subject (like many others but perhaps more than most) has
generated a wealth of jargon, not all of it consistent! We have adopted a
particular notation and terminology throughout this work but in order
to facilitate ‘translation’ for compatibility with other references, and in
particular the manuals of various analysis equipment and software in
widespread use, the alternative names will be indicated as the various
parameters are introduced.

In the past decade (the 1990s) some attempts have been made to
standardise the notation and the terminology used in our subject, [23].
While not succeeding completely, there has been some notable progress,
not least by a number of journals, and significant conferences,
recommending to their prospective authors a basic notation which was
proposed in 1990, [23], and refined over a period of three to four years
before being used as the basis of the documentation published by the
Dynamic Testing Agency, [12], This notation is presented here in an
Appendix and will be strictly adhered to throughout this text.

It is not only in respect of notation that care is needed in order to
ensure clarity in the explanations, and the necessary lack of ambiguity.
The terminology that we use should also be carefully considered and
there are certain words that are used rather imprecisely, and others
that are used by different authors to mean different things. Many of
these are ‘ordinary’ words, and not technical jargon, and so it is worth
mentioning a few of these at the outset of our text. We shall be dealing
extensively with the imprecision and uncertainty which accompanies all
experimental work. Thus we must be clear about the meaning of words
such as ‘errors’, ‘uncertainty’, ‘inaccuracy’, ‘imprecision’; and
‘repeatability’ and ‘reproducibility’.

An Error is the difference between an obtained value and the true
or correct value



22

• Uncertainty refers to the range of values within which we can
define a quantity (that we have measured, or otherwise obtained)

• Inaccuracy relates to the size of the error which may be associated
with a quoted value

• Imprecision generally refers to the degree of resolution or detail
with which a calculation is performed, and often accompanies the
introduction of a truncated or otherwise unrefined element in the
computation of a given quantity

• Repeatability refers to the extent to which a quantity will be
found to have exactly the same (measured) value in a second or
subsequent acquisition, using exactly the same process(es)

• Reproducibility refers to the extent to which a given result
(experiment, measurement) can be reproduced at a later date using
similar procedures or equipment

We shall need to consider the difference between directly measured
data and indirect measurements. Usually, we shall make direct
measurements of excitation forces and the resulting responses: any
response functions which are then derived are indirectly measured, as
are the ensuing estimates of natural frequencies and mode shapes. We
must always be aware that we do not measure these modal properties,
but we derive them by some inexact analysis of the quantities that we
actually do measure.

Later, we shall be concerned with the reconciliation between
predicted properties and measured ones. Indeed, as already mentioned,
this process is one of the major reasons for modal tests to be performed.
In such applications, there is much talk of ‘errors’ in the theoretical
model and this can lead to unrealistic expectations of the whole test¬
analysis comparison process. We shall talk then of verification and
validation and although these terms will be defined in the relevant
chapter, it is perhaps appropriate to introduce the subtle difference
intended to be represented by these two words. ‘Verification’ refers to
the process of determining whether something (an algorithm, a
calculation, a model) is correct or not. It is black or white: the object is
either correct or it is not: the matrix inversion routine is either coded
correctly or it is not: the cables are either correctly labelled or they are
not. ‘Validation’, on the other hand, is less black and white and is more
concerned with whether the object being described is fit for its intended
purpose. ‘Valid’ is taken here to mean that the object (perhaps a
measurement, or a mathematical model) is capable of representing the
quantity or behaviour of interest sufficiently well to serve the
needs of that object. Thus, we have a degree of judgement to exercise
in deciding whether something we have obtained or created is valid
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(i.e. good enough) and this satisfies many of the real life situations in
which we are obliged to apply our skills.

These are not the only examples where precise use of the language
is necessary, but they serve to illustrate the concern and to justify the
comments that will be made from time to time where a similar
confusion is to be avoided by careful choice of the words we use.
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CHAPTER 2

Theoretical Basis

2.1 INTRODUCTION
It has already been emphasised that the theoretical foundations of
modal testing are of paramount importance to its successful
implementation. Thus it is appropriate that this first main chapter
deals with the various aspects of theory which are used at the different
stages of modal analysis and testing.

The majority of this chapter (Sections 2.2 to 2.8) deals with an
analysis of the basic vibration properties of general linear structures,
including ones which contain rotating components, as these properties
form the basis of experimental modal analysis. Later sections extend
the theory somewhat to take account of the different ways in which such
properties can be measured (Section 2.11) and some of the more
complex features which may be encountered, such as complex modes
(Section 2.9) and non-linearities, (Section 2.14). Section 2.10 is devoted
to the question of different methods of graphical presentation which can
be used to enhance both the display and the interpretation of the FRF
data which constitute the ‘currency’ of our methods. There are some
topics of which knowledge is assumed in the main text but for which a
review is provided in the Appendices in case the current usage is
unfamiliar.

Before embarking on the detailed analysis, it is appropriate to put
the different stages into context and this can be done by showing what
will be called the ‘theoretical route’ for vibration analysis (Fig. 2.1). This
illustrates the three phases through which a typical theoretical
vibration analysis progresses. Generally, we start with a description of
the structure’s physical characteristics, usually in terms of its mass,
stiffness and damping properties, and this is referred to as the
Spatial Model.

Then it is customary to perform a theoretical modal analysis of the
spatial model which leads to a description of the structure’s behaviour
as a set of vibration modes; the Modal Model. This model is defined as
a set of natural frequencies with corresponding modal damping
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Fig.2.1 Theoretical route to vibration analysis
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Fig. 2.2 Experimental route to vibration analysis
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factors and vibration mode shapes. It is important to remember that
this solution always describes the various ways in which the structure is
capable of vibrating naturally, i.e. without any external forcing or
excitation, and so these are called the ‘natural’ or ‘normal’ modes of the
structure.

The third stage is generally that in which we have the greatest
interest; namely, the analysis of exactly how the structure will respond
under given excitation conditions and, especially, with what amplitudes.
Clearly, this will depend not only upon the structure’s inherent
properties but also on the nature and magnitude of the imposed
excitation and so there will be innumerable solutions of this type.
However, it is convenient to present an analysis of the structure’s
response to a ‘standard’ excitation (from which the solution for any
particular case can be constructed) and to describe this as the
Response Model. The standard excitation chosen throughout this
work will be that of a unit-amplitude sinusoidal force applied to each
point on the structure individually, and at every frequency within a
specified range. Thus our response model will consist of a set of
frequency response functions (FRFs) which must be defined over
the applicable range of frequency.

Throughout the following analysis we shall be focusing on these
three stages and types of model — Spatial, Modal and Response —
and it is essential to understand fully their interdependence as it is
upon this characteristic that the principles of modal testing are founded.
As indicated in Fig. 2.1, it is possible to proceed from the spatial model
through to a response analysis. It is also possible to undertake an
analysis in the reverse direction — i.e. from a description of the
response properties (such as measured frequency response functions)
we can deduce modal properties and, in the limit, the spatial properties.
This is the ‘experimental route’ to vibration analysis which is shown in
Fig. 2.2 and which will be discussed in detail in Chapter 5.

As a parting comment before we embark on a moderately lengthy
voyage through the underlying theory upon which our subject is based,
it must be noted that it can seem to be an extreme irony that an
experimentally-based technology such as we are describing here
demands a richness of theoretical methods that significantly outstrips
the corresponding material that would be found in a theoretically-based
study of the same general subject. This is simply because in the
experimental field we must be prepared to explain and to interpret the
most general of circumstances (uncertain damping type; almost
inevitable arbitrariness of damping distribution; the distinct possibility
of encountering non-linear behaviour, and so on). The luxury of being
able to dictate the conditions (or assumptions) at the outset of a study —
as we are wont to do in theoretical analyses — is not one that can
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generally be extended to the experimentalist, and so he or she must be
armed with the most general of models.

2.2 SINGLE-DEGREE-OF-FREEDOM (SDOF) SYSTEM
THEORY

Although very few practical structures could realistically be modelled by
a single-degree-of-freedom (SDOF) system, the properties of such a
system are very important because those for a more complex multi-
degree-of-freedom (MDOF) system can always be represented as the
linear superposition of a number of SDOF characteristics.

Throughout this chapter we shall describe three classes of system
model:

(a) undamped
(b) viscously-damped
(c) hysteretically- (or structurally-) damped

and we shall also make extensive use of complex algebra to describe the
time-varying quantities of displacement, force etc. (Appendix 1 gives
some notes on the use of complex algebra for harmonic quantities.)

The basic model for the SDOF system is shown in Fig. 2.3 where

Fig. 2.3 Single-degree-of-freedom (SDOF) system
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/(i) and x(t) are general time-varying force and displacement response
quantities. The spatial model consists of a mass (m) and a spring (k)
plus (when damped) either a viscous dashpot (c) or hysteretic damper

2.2.1 Undamped Systems
As stated, the spatial model consists of m and k.

For the modal model, we consider the properties of the system with
no external forcing, i.e. f(t) = 0 and for this case the governing equation
of motion is:

m x + k x = 0 (2.1)

The trial solution, x(t) = XelG>t leads to the requirement that:

-<n2 m}= 0

Hence the modal model consists of a single solution (mode of vibration)
with a natural frequency given by (&/m)1/2 .

Turning next to a frequency response analysis, we consider an
excitation of the form:

f(t) = Feiat

and assume a solution of the form

xf^Xe1^

where X and F are complex to accommodate both the amplitude and
phase information (see Appendix 1). Now the equation of motion is

(k-u2m\Xelat = Fewt (2.2)

from which we extract the required response model in the form of a
frequency response function, a(co):

a(co) = — = o— also written as H(w}
F (k-a2m) (2.3)

This particular form of FRF, where the response parameter is
displacement (as opposed to velocity or acceleration), is called a
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‘Receptance’ and is usually written as a(co) , although sometimes
is used as a generic FRF parameter. Note that this function, along with
other versions of the FRF, is independent of the excitation.

2.2.2 Viscous Damping
If we add a viscous dashpot, c, the equation of motion for free vibration
becomes

m x + c x + k x = 0 (2.4)

and we must now use a more general trial solution:

x(t) = Xest (where s is complex, rather than imaginary, as before)

with which we obtain the condition that must be satisfied for a solution
to exist:

(ms2 +cs + &)= 0 (2.5)

This, in turn, leads to

c Jc2 —4km
Si 2 = —* 2m 2m (2.6)

= -®0 ^±i ®o V1-^2
where

= (k/m) ; = c/cq = (c^^/^m)
This implies a modal solution of the form:

x(t)= = Xe^e^
which is a single mode of vibration with a complex natural frequency
having two parts:

• an imaginary or oscillatory part; a frequency of <»3 (= coo^l-£2 );
• a real or decay part; a damping rate of a ( = ^a>0 ).
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The physical significance of these two parts of the modal model is
illustrated in the typical free response plot, shown in Fig. 2.4.

Fig. 2.4 Free vibration characteristic of damped SDOF system

Lastly, we consider the forced response when /(i) = F el<ot and, as
before, we assume x(t) = Xemt . Here, the equation of motion:

(-co2 m+i®c+k}xe‘at = Feial (2.7)

gives a receptance FRF of the form

#(“)= a(<o)=-
(«- co m) + c(co c)

(2.8a)

which is now complex, containing both magnitude and phase
information.

Note that

(2.8b)
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and Za(co) = ZX — ZF = tg-1(—&d(k — co2 m)) =0a .
A corresponding non-dimensional version of the same expression

can be developed:

a(co)= —~ — (2.8c)
(1- (co / (»0 + 2iq(<o / coo ))

2.2.3 Structural Damping
Close inspection of the behaviour of real structures suggests that the
viscous damping model used above is not very representative when
applied to MDOF systems. There is seen to be a frequency-dependence
exhibited by real structures which is not described by the standard
viscous dashpot and what is required, apparently, is a damper whose
rate varies with frequency. This conclusion can be seen by inspection of
the underlying physics of typical damping phenomena which exist in
most real structures.

All structures exhibit a degree of damping due to the hysteresis
properties of the material(s) from which they are made. A typical
example of this effect is shown in the force-displacement plot in
Fig. 2.5(a) in which the area contained by the loop represents the energy
‘lost’ in one cycle of vibration between the extremities shown.
Interestingly, the area contained by the shaded triangle represents the
maximum energy stored in the elastic part of the structure, at the point
of greatest deflection. The damping capacity, or effect, of such a
component can conveniently be defined by the ratio of these two areas:

damping capacity = energy lost per cycle/maximum energy stored

Another common source of energy dissipation in practical structures,
and thus of their damping, is the friction which exist in joints between
components of the structure. Whether these effects be macro slip
between adjacent parts or, more commonly, micro slip in the areas of
connection between them, they may be described very roughly by the
simple dry friction model shown in Fig. 2.5(b) with its corresponding
force-displacement diagram. There are, of course, other forms of such
damping mechanisms, but these two serve to illustrate the essential
features of them all.

The mathematical model of the viscous damper which we have used
above can be compared with these more physical effects by plotting the
corresponding force-displacement diagram for it, and this is shown in
Fig. 2.5(c). Because the relationship is • linear between force and
velocity, it is necessary to suppose harmonic motion, at frequency a, in
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Fig. 2.5 Force-deflection characteristics.
(a) Material hysteresis; (b) Dry friction; (c) Viscous damper

order to construct a force-displacement diagram, and that has been done
here. The resulting diagram shows the nature of the approximation
provided by the viscous damper model and the concept of the effective or
equivalent viscous damping coefficient for any of the actual phenomena
as being that which provides the same energy loss per cycle as the real
thing. The problem which arises with the viscous damping model is that
it has a frequency-dependence in the amount of energy loss per cycle
whereas the dry friction mechanism is clearly unaffected by the
frequency of loading and experiments suggest that the hysteresis effect
is similarly independent of frequency. Thus, we find a problem in
obtaining a single equivalent viscous dashpot model which will be valid
over a range of frequencies, such as will be necessary to represent the
damping of an MDOF system over all, or at least several, of its modes of
vibration.

An alternative theoretical damping model is provided by the
hysteretic or structural damper which not only has the advantage
mentioned above (in the form of an effective damper rate which varies
inversely with frequency, ce = (d/®) , and thus satisfies the requirement
that the energy lost per cycle is independent of frequency), but also
provides a much simpler analysis for MDOF systems, as shown below in
Section 2.6. However, it presents difficulties to a rigorous free vibration
analysis and its application is generally focused on the forced response
analysis. In this case we can write an equation of motion:

(- ®2 m+ k +i d)xei(Ot = Fe™* (2.9)

giving
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X f \ 1— = aI co ) = -F (k -co2 m)+ i(d)
(2-10)

or

( Aa(a>) = 5(l-(ffl/coo)2 +IT|)
(2.11)

where q is the structural damping loss factor and replaces the
critical damping ratio, used for the viscous damping model. It can be
seen from (2.8c) and (2.11) that an equivalence between the different
types of damping can be defined at resonance, at which frequency,
n = 2^e.

The similarities between the FRF expressions for the different cases
are evident from equations (2.3) (2.8) and (2.10).

2.3 PRESENTATION AND PROPERTIES OF FRF DATA
FOR SDOF SYSTEM

Having developed expressions for the basic receptance frequency
response function of the SDOF system, we now turn our attention to the
various ways of presenting or displaying these data. We shall first
discuss variations in the basic form of the FRF and then go on to explore
different ways of presenting the properties graphically. Finally, we shall
examine some useful geometric properties of the resulting plots.

2.3.1 Alternative Forms of FRF
So far we have defined our receptance frequency response function
a(w) as the ratio between a harmonic displacement response and the
harmonic force. This ratio is complex as there is both an amplitude ratio
(|a(co)|) and a phase angle between the two sinusoids (9a).

We could equally have selected the response velocity v(f) (= x(t)) as
the ‘output’ quantity and defined an alternative frequency response
function — Mobility, (or Y(a>)) — as

= -^ (2.12)v F

However, when considering sinusoidal vibration we have a simple
relationship between displacement and velocity (and thus between
receptance and mobility) because:
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x(t) = Xeiat

and

v(t)= x(t) = Veiat = i^Xe™'

So,

V . XY (co) = — = i to— = i co a(co)
F F

Thus

| y(co)| = co | a(co)|

and

0y =6a+90°

(2.13)

so that mobility is closely related to receptance. Similarly, we could use
acceleration (a(i) = x(t) ) as our response parameter (since it is
customary to measure acceleration in tests) so we could define a third
FRF parameter — Inertance or Accelerance — as

(2.14)

These represent the main formats of FRF although there; exist yet more
possibilities by defining the functions in an inverse way, namely as:

force
displacement

“Dynamic Stiffness”

[fe - co2 m )+ (i coc)or (i d) (2.15)

or

force
velocity

“Mechanical Impedance”
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or

force
acceleration

“Apparent Mass”

It should be noted that these latter formats are often discouraged,
except in special cases, as they can lead to considerable confusion and
error if improperly used in MDOF systems.

Table 2.1 gives details of all six of the FRF parameters and of the
names variously used for them.

Table 2.1 Definition of Frequency Response Functions

Response Parameter R Standard FRF: RIF Inverse FRF: FIR

DISPLACEMENT RECEPTANCE
ADMITTANCE

DYNAMIC COMPLIANCE
DYNAMIC FLEXIBILITY

DYNAMIC STIFFNESS

VELOCITY MOBILITY MECHANICAL IMPEDANCE

ACCELERATION ACCELERANCE
INERTANCE

APPARENT MASS

Lastly, it should be noted that it is common practice to use to
refer to the standard frequency response functions generically, and to
use Z(co) to describe any of the inverse formats

2.3.2 Graphical Displays of FRF Data
There is an overriding complication to plotting FRF data which derives
from the fact that they are complex and thus there are three quantities
— frequency plus two parts of the complex function — and these cannot
be fully displayed on a standard x-y graph. Because of this, any such
simple plot can only show two of the three quantities and so there are
different possibilities available, several of which are used from time to
time.

The four most common forms of presentation are:

(i) Modulus (of FRF) vs. Frequency and Phase vs. Frequency (the
Bode type of plot, consisting of two graphs);

(ii) Real Part (of FRF) vs. Frequency and Imaginary Part vs.
Frequency (two plots);
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(a)

(b)

Fig. 2.6 FRF plots for undamped SDOF system (linear scales),
(a) Receptance FRF; (b) Mobility FRF
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(c)

Fig. 2.6 FRF plots for undamped SDOF system (linear scales).
(c) Accelerance FRF

(iii) Real Part (of reciprocal of FRF) vs. Frequency (or (Frequency)2)
and Imaginary Part (of reciprocal of FRF) vs. Frequency; and

(iv) Real Part (of FRF) vs. Imaginary Part (of FRF). (The so-called
‘Nyquist plot’: a single graph which does not contain frequency
information explicitly).

We shall now examine the form and use of these types of graphical
display and identify the particular advantages or features of each.

(i) A classical Bode plot is shown in Fig. 2.6(a) for the receptance of a
typical SDOF system without damping. Corresponding plots for
the mobility and inertance of the same system are shown in Figs.
2.6(b) and (c), respectively.

One of the problems with these FRF properties, as with much
vibration data, is the relatively wide range of values which must
be encompassed no matter which type of FRF is used. In order to
cope with this problem, it is often appropriate to make use of
logarithmic scales and the three functions specified above have
been replotted in Figs. 2.7(a), (b) and (c) using logarithmic scales
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(b)

Fig. 2.7 FRF plots for undamped SDOF system (log-log scales),
(a) Receptance FRF; (b) Mobility FRF
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Fig. 2.7 FRF plots for undamped SDOF system (log-log scales).
(c) Accelerance FRF

for all frequency and modulus axes. The result is something of a
transformation in that in each plot can now be divided into three
regimes:

a low-frequency straight-line characteristic;
a high-frequency straight-line characteristic, and
the resonant region with its abrupt magnitude and phase
variations.

It is helpful and instructive to superimpose on these log-log plots
a grid of lines which show the relevant FRF characteristics
separately of simple mass elements and simple spring elements.
Table 2.2 shows the corresponding expressions for am , , Ym ,
etc. and from this it is possible to see that mass and stiffness
properties will always appear as straight lines on log (modulus)
vs. log (frequency) plots, as shown in Fig. 2.8. These have in fact
been included in Fig. 2.7 but their significance can be further
appreciated by reference to Fig. 2.8 which shows the mobility
modulus plots for two different systems. By referring to and
interpolating between the mass- and stiffness-lines drawn on the
plot, we can deduce that system (a) behaves as would a mass of
1 kg with a spring stiffness of 2.5 kN/m while system (b) has
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corresponding values of 0.8 kg and 120 kN/m, respectively.

Table 2.2 Frequency Responses of Mass and Stiffness Elements

FRF Parameter Mass Stiffness

RECEPTANCE a(o)
log|a(a>)|

-1/co2m
-log(m)-21og((o)

1/k
-log(/e)

MOBILITY Y(co)
log|y(co)|

-i/am
-log(m)-log (co)

iay/k
log(co)-log(&)

ACCELERANCE A(©)
log| A(co)|

1/m
-log(m)

-<b2//z
21og(o) — log(&)

Fig. 2.8 Mobility FRF plots for different undamped SDOF systems

This basic style of displaying FRF data applies to all types of
system, whether damped or not, while the other forms are only
applicable to damped systems and then tend to be sensitive to the
type of damping. Fig. 2.9 shows the basic example system plotted
for different levels of viscous damping with a zoomed detail of the
narrow band around resonance which is the only region that the
damping has any influence on the FRF plot.

(ii) Companion plots for Real Part (Re.) vs. Frequency and Imaginary
Part (Im.) vs. Frequency are shown in Fig. 2.10 for the SDOF
system with light viscous damping. All three forms of the FRF are
shown and from these we can see how the phase change through
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Fig. 2.9 Resonance region detail of FRF plot for damped SDOF system
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(a) (b)

(c)

Fig. 2.10 Plots of real and imaginary parts of FRF for damped SDOF
system.
(a) Receptance; (b) Mobility; (c) Accelerance
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the resonance region is characterised by a sign change in one part
accompanied by a peak (max or min) value in the other part.

It should be noted here that the use of logarithmic scales is
not feasible in this case primarily because it is necessary to
accommodate both positive and negative values (unlike the
modulus plots) and this would be impossible with logarithmic
axes. Partly for this reason, and others which become clearer
when dealing with MDOF systems, this format of display is not so
widely used as the preceding ones.

(iii) The so-called ‘inverse’ or ‘reciprocal’ plots are, however, more
interesting in that they have the potential of providing rather
more insight into the system whose characteristics they
represent. First of all, it can be seen from the expression for the
inverse receptance (see equation (2.15)) that the Real Part
depends entirely on the mass and stiffness properties while the
Imaginary Part is a function only of the damping. This separation
of the constituent physical properties has not been observed in the
other versions of the FRF, or their plots. Fig. 2.11 shows an
example of a plot of this form for a system with a combination of
both viscous and structural damping. Fig. 2.11(a) shows the Real
Part which has a slope of (—m) at the axis crossing point, which is
itself at the undamped system natural frequency, o5q . Fig. 2.11(b)

(b)

Fig.2.11 Inverse FRF plot for system with (a) mixed, and (b) viscous
damping
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shows a straight line whose slope is given by the viscous damping
rate, c, and whose intercept at co = 0 is provided by the structural
damping coefficient, d. The potential of this form of presentation,
if it carries over to the more general case of MDOF systems, soon
becomes apparent.

(iv) The Nyquist or Argand plane plot is widely used and is a very
effective way of displaying the important resonance region in
some detail.

Fig. 2.12 shows Nyquist-type FRF plots corresponding to the
viscously-damped SDOF system previously illustrated in Figs. 2.9
and 2.10. As this style of presentation consists of only a single
graph, the missing information (in this case, frequency) must be
added by identifying the values of frequency corresponding to
particular points on the curve. This is usually done by indicating
specific points on the curve at regular increments of frequency. In
the examples shown, only those frequency points closest to
resonance are clearly identifiable because those away from this
area are very close together. Indeed, it is this feature — of
distorting the plot so as to focus on the resonance area — that
makes the Nyquist plot so effective for modal testing applications.

It is clear from the graphs in Fig. 2.12, and also from the
companion set in Fig. 2.13 for hysteretic damping, that each takes
the approximate shape of a circle. In fact, as will be: shown below,
within each set one is an exact circle (marked by *), while the
others only approximate to this shape. For viscous damping, it is
the mobility Y(<o) which traces out an exact circle while for
hysteretic damping, it is the receptance a(w) and accelerance
A(a>) which do so. In the other cases, the degree of distortion from
a circular locus depends heavily on the amount of damping
present — becoming negligible as the damping decreases.

Having shown the most common x-y plots used to present FRF data, it is
instructive now to provide an illustration of the full three-dimensional
quantity which the FRF constitutes. An isometric projection of the Re
vs. Im vs. Frequency plot of the Receptance FRF of an SDOF system
with viscous damping is shown in Fig. 2.14. From this illustration it is
possible to visualise the three projections already shown in (i), (ii) and
(iv) above as well as the original three-dimensional curve itself. It is not
difficult to understand why this type of presentation is not widely used
in practice: its interpretation for more complex systems with many
DOFs can become extremely difficult!



46

(b)

Fig. 2.12 Nyquist FRF plots for
SDOF system with
viscous damping
(a) Receptance;
(b) Mobility;
(c) Accelerance

Fig. 2.13 Nyquist FRF plots for
SDOF system with
structural damping
(a) Receptance;
(b) Mobility;
(c) Accelerance
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Fig. 2.14 Three-dimensional plot of SDOF system FRF

2.3.3 Properties of SDOF FRF Plots
Lastly, we shall examine some of the basic geometric properties of the
various plots we have introduced for the FRF properties of the SDOF
system, or oscillator.

We shall consider three specific plots:

(i) Log mobility modulus versus frequency.
(ii) Nyquist mobility for viscous damping.
(iii) Nyquist receptance for hysteretic damping.

It may be observed from Figs. 2.7(b), 2.8 and 2.9, and elsewhere, that for
light damping (typically less than 1 per cent) the mobility FRF plot
exhibits a degree of symmetry about a vertical line passing through the
resonance frequency. As was pointed out by Salter [3], the basic form of
this plot can be constructed quite accurately using the reference values
indicated on Fig. 2.15.

Turning to the Nyquist plots, we shall show that the two particular
cases referred to above, namely:

mobility for a viscously-damped system, and
receptance for a hysteretically-damped system
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Fig. 2.15 Geometric properties of mobility FRF plot for SDOF system

both trace out exact circles as frequency co sweeps from 0 to oo.
Take first the viscous damping case. From equations (2.9) and (2.14)

we have that the mobility is

y(co) = i co a(co) = ——-
k — ar m + i(oc

o . / 9co c + ico(fe — co m

{k — a2 + (coc)2
(2-16)

So,

Re(Y) = T
co(/j — co2m( )=7—\k - co ml + (o

Let

17 = [ Re(Y)-—| and V = (lm(y))

Then

(2-17)
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Hence, a plot of Re(Y(®)) vs. Im(Y(®)) for cd = 0 -> oo will trace out a
circle of radius 1/ 2c and with its centre at (Re = l/2c, Im = 0), as
illustrated clearly in Fig. 2.12(b).

For the hysteretic damping case we have, from equation (2.11), a
slightly different expression for the FRF:

. . 1 (fe-®2
«(®) = 7 9 I = / v[k-m2m)+id +(d)2

(2.18)

so that

U = Re(a) = k-m2 m
[k -®2 mf + (d)2

V = Im(a) = -
\k-a2m) +(d)z

Although not the same expressions as those above for viscous damping,
it is possible to see that

if =r j_f
I 2d J \2d J (2.19)

demonstrating that a Nyquist plot of receptance for a hysteretically-
damped SDOF system will form a circle of radius l/2d and centre at (0,
—l/2d), as illustrated in Fig. 2.13(a).

2.4 UNDAMPED MULTI-DEGREE-OF-FREEDOM (MDOF)
SYSTEMS

2.4.1 Free Vibration Solution — The Modal Properties
Throughout much of the next seven sections, we shall be discussing
multi-degree-of-freedom (MDOF) systems, which might have two
degrees of freedom, or 200 or 20000, and in doing so we shall be
referring to ‘matrices’ and ‘vectors’ of data in a rather abstract and
general way. In order to help visualise what some of these generalities
mean, a specific 2DOF system, shown in Fig. 2.16, will be used as
illustration although the general expressions and solutions will apply to
the whole range of MDOF systems.

In this first part, we shall confine our interest to systems which
have the feature that their dynamic behaviour is determined
predominantly by a combination of inertia and stiffness effects, with
damping added in a subsequent section. These systems are typical of
those which we would describe as stationary structures, and which
relate to the vast majority of situations where it is required to apply
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modal testing and analysis. Later, in Section 2.8, we shall extend our
studies to another class of system which is typified by structures in
which one or more components rotate, just as is found in rotating
machinery. In this latter class of system, more complicated equations of
motion apply, with a consequently greater complication in the modal
properties and the response functions which relate. However, that is left
until much later: first, we must establish the essential behaviour of the
‘standard’ type of MDOF system.

For an undamped MDOF system, with N degrees of freedom, the
governing equations of motion can be written in matrix form as

Mx(0}+Mx(0}={/(0} (2.20)

where [M] and [7f] are NxN mass and stiffness matrices,
respectively, and {xft)} and {/(t)} are Wxl vectors of time-varying
displacements and forces.

For our 2DOF example, the equations become

mi *1 + (^1 + ^2)X1- )x2 = fl

^2 x2 + + ^3)x2 “ )X1 = /2

7771
0

0 pl
7772Jp2

<1 ^1
m2

k2 k3 ijvw:'WvV AWAV

Fig. 2.16 2DOF system used as numerical case study.
777i = 1 kg; 7772 = 1 kg; - 0.4 MN/m; k% = 0.8 MN/m

or, using the numerical data in Fig. 2.16,

M= * ° (kg) ! K = (MN/m)

We shall consider first the free vibration solution (in order to
determine the normal or natural modal properties) by taking
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{/(')}= {o}

In this case we shall assume that a solution exists of the form

{x(i)}={x}e^

where {X} is an N x 1 vector of time-independent amplitudes for which
case it is clear that {x} = -co2{Xje^ .

(NOTE that this assumes that the whole system is capable of
vibrating in simple harmonic motion at a single frequency, co.)

Substitution of this condition and trial solution into the equation of
motion (2.20), leads to

jx]-co2 [M^X}^ = {0} (2.21)

for which the only non-trivial solutions are those which sa tisfy

det| [x]-co2[M]| = 0 (2.22)

or

27V 27V—2
^27V ® + ^27V—2 +• «0 “ 0

2 o 9 2from which condition can be found N values of co : ( co^ , > - > ar , - ,
cojy ), the undamped system’s natural frequencies.

Substituting any one of these back into (2.21) yields a corresponding
set of relative values for {X} , i.e. {vpJr > the so-called mode shape
corresponding to that natural frequency.

The complete solution can be expressed in two N x N matrices — the
eigenmatrices — as

[.»?•.]■M
where co2 is the rth eigenvalue, or natural frequency squared, and {vp}r
is a description of the corresponding mode shape.

Various numerical procedures are available which take the system
matrices [M] and [X] (the Spatial Model), and convert them to the
two eigenmatrices [co2] and [T] (which constitute the Modal Model).

It is important to realise at this stage that one of these two matrices
— the eigenvalue matrix — is unique, while the other — the eigenvector
matrix — is not. Whereas the natural frequencies are fixed quantities,
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the mode shapes are subject to an indeterminate scaling factor which
does not affect the shape of the vibration mode, only its amplitude.
Thus, a mode shape vector of

3
6
3
0

1
2

describes exactly the same vibration mode as1 •

0

and so on.
What determines how the eigenvectors are scaled, or ‘normalised’ is

largely governed by the numerical procedures followed by the
eigensolution. This topic will be discussed in more detail below.
For our 2DOF example, we find that equation (2.22) becomes

[k1+k2-a2m1j (-^2)
(-^2) [k2+k3-(o2 m2

det

= ©4(m1 )- co2 ^m2 + m2)k2 + m2k3 +m2kl)+(k2k2 + k2k3 + k2k3)=O

Numerically:

co4 -co2(2.4 x106 )+ (0.8 x1012) = 0

This condition leads to © = 4 x 105 (rad/s)2 and a2 = 2 x 106 (rad/s)2 .
Substituting either value of into the equation of motion, gives

(&1 + k2 — ©2 = (k2\.X2
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Numerically, we have a solution

2.4.2 Orthogonality Properties
Before proceeding with the next phase — the response analysis — it is
worthwhile to examine some of the properties of the modal model as
these greatly influence the subsequent analysis.

The modal model possesses some very important properties —
known as the Orthogonality properties — which, concisely stated, are
as follows:

[<klM=k]
(2.23)

from which: [a>^] ~ [^r] [^r ] where mr and kr are often referred to
as the modal mass and modal stiffness of mode r. (See the next
subsection — 2.4.3 — for a discussion of modal, generalised, and
effective mass and stiffness.) Now, because the eigenvector matrix is
subject to an arbitrary scaling factor, the values of mr and kr are not
unique and so it is inadvisable to refer to ‘the’ modal mass or stiffness of
a particular mode. Many eigenvalue extraction routines scale each
vector so that its largest element has unit magnitude (1.0), but this is
not universal. In any event, what is found is that the ratio of (kr I mr )
is unique and is equal to the eigenvalue, (gJ^ ) . Among the many scaling
or normalisation processes, there is one which has most relevance to
modal testing and that is mass-normalisation. The mass-normalised
eigenvectors are written as [<E>] and have the particular property that

[«]=[/]
and thus (2.24)

MWbk2]
The relationship between the mass-normalised mode shape for mode r,

, and its more general form, {vp}r- > is, simply:
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{4»}r = ~7=Mr where mr = {q/}^ [M ]{v}r

or (2.25)

A proof of the orthogonality properties is as follows. The equation of
motion for free vibration may be written

k]-co2[M])x}e‘“i = {0} (2.26)

For a particular mode, we have

{0} (2.27)

Premultiply by a different eigenvector, transposed:

{<kWkM==0 (2.28)

We can also write

kWkM=M (2.29)

which we can transpose, and postmultiply by {y}r , to give

Ml(kF'- kF’ )Mr = 0 (2.30)

But, since [M] and [K] are generally symmetric*, they are identical to
their transposes and equations (2.28) and (2.30) can be combined to give

(«)2-aj2)v^^ (2.31)

which, if , can only be satisfied if

{VMv}r=0;r^ (2.32)

See later for the analysis in the special cases where [M] and [K]
are not symmetric.
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Together with either (2.28) or (2.30), this means also that

{v}M4-=0;r*s (2.33)

For the special cases where r - s, or if ar = as , equations (2.32) and
(2.33) do not apply, but it is clear from (2.28) that

(2-34)

so that

= mr and = kr

and

0)2 = kr /mr
Putting together all the possible combinations of r and s leads to the full
matrix equation (2.23) above.

For our 2DOF example, the numerical results give eigenvectors
which are clearly plausible. If we use them to calculate the generalised
mass and stiffness, we obtain

1 1T 12
1 -1JL— 0.8

-0.8T1
1.2 1

1 106 =
0.8 0’106 = [kr

-1 0 4

clearly
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To obtain the mass normalised version of these eigenvectors, we must
calculate

0.707
0.707

0.707
-0.707

2.4.3 Modal, Generalised and Effective Mass and Stiffnesses
In the previous section, we introduced a pair of quantities which we
called the modal mass and modal stiffness. There is a variety of
terminology in this area which is worth mentioning so that at least the
different quantities can be identified, even if uniformity of terminology
cannot be assured. Three terms are encountered in the literature: modal
mass (and stiffness); generalised mass and effective or equivalent mass.
In this section we shall seek to explain what these different quantities
are and how they may be interpreted or used.

We start with the modal mass, already defined above based on the
mode shape vector for mode r and the system mass matrix. As
mentioned there, there is no unique value for the modal mass as it is
directly related to the scaling method which has been used to define the
mode shape eigenvector, This scaling is completely arbitrary and so
the modal mass could be any value, as also can be the corresponding
modal stiffness. However, as already observed, the ratio between any
modal stiffness and its associated modal mass is unique and is equal to
the corresponding eigenvalue. The modal mass is generally used to
convert the original mode shape vector, to the more useful mass-
normalised mode shape vector, It should be noted that the original
vector is dimensionless, while the mass-normalised vector has
dimensions of (mass)-0-5.

Using the mass-normalised mode shape vectors, we can see how to
derive quantities which provide us with information about the effective
mass (or stiffness) at any point on the structure, such as DOF j. It is
helpful to visualise a detail of the point FRF, H jj (co) , that might be
computed and plotted just in the immediate vicinity of the
corresponding natural frequency: this would look something similar to
the detailed plot shown earlier in Fig 2.15 and would be characterised
by a skeleton which is based on an effective mass line, (zn^)r, and an
effective stiffness line, (kjj)r. These quantities can be related to the
eigenvector elements by the simple formulae:

Effective mass at DOF j for mode r,



57

Im a ) = -7 nr > which has units of mass,

and effective stiffness at DOF; for mode r,

It can be seen that since the mass-normalised eigenvectors are unique,
and not subject to any arbitrary scaling factors, these effective mass and
stiffness properties are also unique and represent a useful description of
the underlying behaviour of the structure point by point, and mode by
mode.

The other quantities which are sometimes referred to as unique
properties of each mode are the generalised mass and generalised
stiffness. Although there s no universal agreement of the definitions of
these properties, that which is adopted in this work is to define the
generalised mass (or stiffness) of the rth mode as the effective mass (or
stiffness) at the DOF with the largest amplitude of response. This
quantity serves to provide a comparison of the relative strength of each
mode of the structure.

2.4.4 Repeated Roots or Multiple Modes
There are situations where two (or more) different modes will have the
same natural frequency. This is one of the exclusions made above at
equations (2.32) and (2.33) but occurs frequently in structures which
exhibit a degree of symmetry, especially axisymmetry, as found in most
discs, cylinders, rings, etc. In these cases, there is no guarantee that the
corresponding two (or more) eigenvectors, {4>}r and {<j>}s , will be
orthogonal to each other as required in those equations. However, it can
be asserted that two such orthogonal vectors do exist and that if this
property is not already exhibited by the two vectors available, then two
other linear combinations of these two vectors can always be found such
that orthogonality is observed between the mode shapes used to
describe the motion in each of the two modes which have the same
frequency. It should be noted, however, that free vibration at that
frequency is possible not only in each of the two vectors thus defined,
but also in a deformation pattern which is given by any linear
combination of these two vectors. This can be easily demonstrated using
the example of a circular-section bar, clamped at one end, as shown in
Fig. 2.17(a). There will clearly be two modes which correspond to each
bending deflection pattern along the shaft: one in the vertical plane and
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the other in the horizontal plane, see Figs. 2.17(b) and (c). If the bar
itself and the end supports are completely axisymmetric, these two
modes will have identical natural frequencies. As a result, any
combination of ‘the vertical’ mode and ‘the horizontal’ mode will also be
a valid mode of vibration at that natural frequency, such as the example
shown in Fig. 2.17(d).

As the existence of double modes is commonplace in many
structures, we shall return to these features from time to time.

Fig. 2.17 Repeated modes of symmetric structures.
(a) Symmetric structure; (b) Vertical mode; (c) Horizontal mode;
(d) Oblique mode

2.4.5 Forced Response Solution — The FRF Characteristics
Turning now to a response analysis, we shall consider the case where
the structure is excited sinusoidally by a set of forces all at the same
frequency, co, but with individual amplitudes and phases. Then

and, as before, we shall assume a solution exists of the form

{%(«)} =
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where {F} and {X} are N xl vectors of time-independent complex
amplitudes.

The equation of motion then becomes

={F}eiat (2.35)

or, rearranging to solve for the unknown responses,

{X}= ([Xj-co2^])-1^} (2.36a)

which may be written

{x}=[a((D)]{F} (2.36b)

where [a(a))] is the NxN receptance FRF matrix for the system and
constitutes its Response Model. The general element in the receptance
FRF matrix, a^o) , is defined as follows:

a ik (<°) = —~ b Fm = m = 1, N; k
\Fk )

(2.37)

and as such represents an individual receptance FRF expression very
similar to that defined earlier for the SDOF system.

It is clearly possible for us to determine values for the elements of
[a(co)] at any frequency of interest simply by substituting the
appropriate values into (2.36). However, this involves the inversion of a
system matrix at each frequency and this has several disadvantages,
namely:

it becomes costly for large-order systems (large X);
it is inefficient if only a few of the individual FRF expressions are
required;
it provides no insight into the form of the various FRF properties.

For these, and other, reasons an alternative means of deriving the
various FRF parameters is used which makes use of the modal
properties for the system instead of the spatial properties.

Returning to (2.36) we can write

[a((»)^ (2.38)
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/pPremultiply both sides by [O] and postmultiply both sides by [Q] to
obtain

«,>])«]=tfW'H
or

which leads to

(2.39)

(2.40)

It is clear from this equation that the receptance matrix [a(a>)] is
symmetric and this will be recognised as the principle of reciprocity
which applies to many structural characteristics. Its impheations in this
situation are that:

ajk = (Xj/Fk)=akj = (Xk/Fj)
Equation (2.40) permits us to compute any individual FRF parameter,
a^co), using the following formula (noting that the resulting
expression is delivered by multiplying the row of [O] by the diagonal
frequency matrix by the /sth column of [CEq :

(2.41)

or

N
ajk^)=^r=l

r^jk
—2 2(0r - CO

which is very much simpler and more informative than by means of the
direct inverse, equation (2.36a). Here we introduce a new parameter,
r Ajk , which we shall refer to as a Modal Constant*: in this case, that

* Note that other presentations of the theory sometimes refer to the
modal constant as a ‘Residue’ together with the use of ‘Pole’
instead of our natural frequency.
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for mode r for this specific receptance linking coordinates j and k. The
above is a most important result and is in fact the central relationship
upon which the whole subject is based. From the general equation
(2.36a), the typical individual FRF element a^(<a), defined in (2.37),
would be expected to have the form of a ratio of two polynomials:

a#(w) = b0 + b^2 + b2®4 +...+ />jV_1a>2'v 2

2 4 6 2NUo+UjCO + a2® +«3® ...+ aNa
(2.42)

and in such a format it would be difficult to visualise the nature of the
function, a^co) . However, it is clear that an expression such as (2.42)
can also be rewritten as

(2.43)

and by inspection of the form of (2.36a), it is also clear that the factors
in the denominator, ®i , a2 > etc. are indeed the natural frequencies of
the system, cor (this is because the denominator is necessarily formed
by the det|[lf]-o)2[M]|).

All this means that a forbidding rational fraction expression such as
(2.42) can be expected to be reducible to a partial fraction series form,
such as

, x lAjk 2Ajkajk^ = _2 +_2+~
W] -O2 ®2 “®2

N Au•y r^jk
Zu —2 2r=l“r -®

(2.44)

Thus, the solution we obtain through equations (2.38) to (2.41) is not
unexpected, but its significance lies in the very simple and convenient
formula it provides for the coefficients, r Aj^ , in the series form.
We can observe some of the above relationships through our 2DOF
example. The forced vibration equations of motion give

+ k2 — + (— k2 )x2 = Fi
(— ^2)^1 + (^2 + ^3 — W2^2W2 = F2
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which, in turn, give (for example):

| | ^2 + ^3 — ® ^2
0 a)47n17w2 + m2)k2 + mlk3 + m2k^

+(klk2 + k2k3 + k^k^
or, numerically,

(1.2 xlO6 -co2)
(co4 -2.4xlO6co2 +0.8xl012)

Now, if we use the modal summation formula (2.41) together with
the results obtained earlier, we can write

= f = (^ll)2
+

(^12
-2_a2

or, numerically,

0.5
!

0.5
0.4xl06- co2 2xl06-o2

which is equal to (1.2xl06 -<o2 ^(o.SxlO12 -2.4xl06 ©2 +co4), as
above.

The above characteristics of both the modal and response models of
an undamped MDOF system form the basis of the corresponding data
for the more general, damped, cases.

The following sections will examine the effects on these models of
adding various types of damping, while a discussion of the presentation
MDOF frequency response data is given in Section 2.10.

2.5 MDOF SYSTEMS WITH PROPORTIONAL DAMPING
2.5.1 General Concept and Features of Proportional Damping
In approaching the more general case of damped systems, it is
convenient to consider first a special type of damping which has the
advantage of being particularly easy to include in our analysis. This
type of damping is usually referred to as ‘proportional’ damping (for
reasons which will be clear later) although this is a somewhat
restrictive title. The particular advantage of using a proportional
damping model in the analysis of structures is that the modes of such a
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structure are almost identical to those of the undamped version of the
model. Specifically, the mode shapes are identical and the natural
frequencies are very similar to those of the simpler undamped system.
In fact, it is possible to derive the modal properties of a proportionally-
damped system by analysing the undamped version in full and then
making a correction for the presence of the damping. While this
procedure is often used in the theoretical analysis of structures, it
should be noted that it is only valid in the case of this special type or
distribution of damping, which may not generally apply to the real
structures studied in modal tests.

If we return to the general equation of motion for an MDOF system,
equation (2.20), and add a viscous damping matrix [C] , we obtain:

[<}+ [C](x}+ M*}= {/} (2.45)

which is not so amenable to the type of solution followed in Section 2.4.
A general solution will be presented in the next section, but here we
shall examine the properties of this equation for the case where the
damping matrix is directly proportional to the stiffness matrix; i.e.
where

[C] = PM (2.46)

(NOTE — It should be noted that this is not the only type of
proportional damping — see below.)

In this case, it is clear that if we pre- and post-multiply the damping
matrix by the eigenvector matrix for the undamped system, [T] , in just
the same way as was done in equation (2.23) for the mass and stiffness
matrices, then we shall find:

(2.47)

where the diagonal elements, cr , represent the modal damping of the
various modes of the system. The fact that this matrix is also diagonal
means that the undamped system mode shapes are also those of the
damped system, and this is a particular feature of this type of damping.
This statement can easily be demonstrated by taking the general
equation of motion above (2.45) and, for the case of no excitation, pre-
and post-multiplying the whole equation by the eigenvector matrix,
[T]. We shall then find:

[m3p}+[c4p}+[fer]{p}={0} ; (2.48)
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from which the rth individual equation is:

mrpr + crpr + krpr = 0 (2.49)

which is clearly that of a single-degree-of-freedom system, or of a single
mode of the system. This mode has a complex natural frequency with an
imaginary (oscillatory) part of

, — ^2 . —2 . r cr 1 o—
mr 2jkrtnr z

and a real (decay) part of

ar - Qr(or —
M

(using the notation introduced above for the SDOF analysis).
These characteristics carry over to the forced response analysis in

which a simple extension of the steps detailed between equations (2.35)
and (2.41) leads to the definition for the general receptance FRF as:

[a(©)]= +

or

TV

r=l

(2.50)

which has a very similar form to that for the undamped system except
that now it becomes complex in the denominator as a result of the
inclusion of damping.

2.5.2 General Forms of Proportional Damping
It may be seen from the above that other distributions of damping will
bring about the same type of result and these are collectively included
in the classification ‘proportional damping’. In particular, if the
damping matrix is proportional to the mass matrix, then exactly the
same type of result ensues and, indeed, the usual definition of
proportional damping is that the damping matrix [C] should be of the
form:
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[c]=pM+y[m] (2.51)

In this case, the damped system will have eigenvalues and eigenvectors
as follows:

0>r = = Prar/2 + Y/2cor

and

[^damped ]= [^undamped]
Distributions of damping of the type described above are sometimes,

though not always, found to be plausible from a practical standpoint:
the actual damping mechanisms are usually to be found in parallel with
stiffness elements (for internal material or hysteresis damping) or with
mass elements (for friction damping). There is a more general definition
of the condition required for the damped system to possess the same
mode shapes as its undamped counterpart, and that is:

(2.52)

although it is more difficult to make a direct physical interpretation of
its form.

Finally, it can be noted that an identical treatment can be made of
an MDOF system with proprtional hysteretic damping, producing the
same essential results. If the general system equations of motion are
expressed as:

+ (2.53)

and the hysteretic damping matrix [D] is ‘proportional’, typically;

(2.54)

then we find that the mode shapes for the damped system are again
identical to those of the undamped system and that the eigenvalues
take the complex form:

(l + iT]r) ; a>r =kr/mr ; qr=P + y/cD2 (2.55)

Also, the general FRF expression is written:
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N

r=l
(2.56)

2.6 MDOF SYSTEMS WITH STRUCTURAL (HYSTERETIC)
DAMPING — GENERAL CASE

2.6.1 Free Vibration Solution — Complex Modal Properties
The analysis in the previous section for proportionally-damped systems
gives some insight into the characteristics of this more general
description of practical structures. However, as was stated there, the
case of proportional damping is a particular one which, although often
justified in a theoretical analysis because it is realistic and also because
of a lack of any more accurate model, does not apply to all cases. In our
studies here, it is very important that we consider the most general case
if we are to be able to interpret and analyse correctly the data we
observe on real structures. These, after all, know nothing of our
predilection for assuming proportionality in the distribution of damping.
Thus, in the next two sections we consider the properties of systems
with general damping elements, first of the hysteretic type, then
viscous.

We start by writing the general equation of motion for an MDOF
system with hysteretic damping and harmonic excitation (as it is this
that we are working towards):

[M ]{x}+ Mx}+ = {F}eia,t (2.57)

Now, consider first the case where there is no excitation and assume a
solution of the form:

{*} = {X}eiU (2.58)

where X is allowed to be complex. Substituted into (2.57), this trial
solution leads to a complex eigenproblem whose solution is in the form
of two matrices (as for the earlier undamped case), containing the
eigenvalues and eigenvectors. In this case, however, these matrices are
both complex, meaning that each natural frequency and each mode
shape is described in terms of complex quantities. We choose to write
the r^h eigenvalue as

= ©2(1+ iqr) (2.59)
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where ®r is the natural frequency and r]r is the damping loss factor for
that mode. It is important to note that the natural frequency is not
(necessarily) equal to the natural frequency of the undamped system,
ar , as was the case for proportional hysteretic damping, although the
two values will generally be very close in practice.

The complex mode shapes are at first more difficult to interpret but
in fact what we find is that the amplitude of each DOF can be
considered as having both a magnitude and a phase angle. This is only
very slightly different from the undamped case as there we effectively
have a magnitude at each point plus a phase angle which is either 0° or
180°, both of which can be completely described using real numbers.
What the inclusion of general damping effects does is to generalise this
particular feature of the mode shape data to a situation in which the
phase may take any value, not only 0° and 180°. Further discussion of
this feature is given in Section 2.9.

This eigensolution can be seen to possess the same type of
orthogonality properties as those demonstrated earlier for the
undamped system and may be defined by the equations:

(2.60)

Again, the modal mass and stiffness parameters (now complex) depend
upon the normalisation of the mode shape vectors for their magnitudes
but always obey the relationship:

2 _ kr (2.61)mr
and here again we may define a set of mass-normalised eigenvectors as:

(2.62)
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Numerical examples with structural damping
Some further numerical examples are included to illustrate the
characteristics of more general damped systems, based on the
following 3DOF model:

Model 1

mi = 0.5 kg

m2 =1.0 kg
m3 =1.5 kg

^1 = = ^3 = = ^5 = ^6 =1-0 x103 N/m

Case 1(a) — Undamped

"950 0 0
0 3352 0
0 0 6698

0.464
[0]= 0.536

0.635

-0.218 -1.318
-0.782 0.318

0.493 0.142

Case 1(b) — Proportional structural damping (dj = 0.05kj; j =1,6)

950(1+ 0.050
0
0

0 0
3352(1+ 0.050 0

0 6698(1+ 0.050
0.464(0°)
0.536(0°)
0.635(0°)

0.218(180°) 1.318(180°)"
0.782(180°) 0.318(0°)
0.493(0°) 0.142(0°)

Case 1(c) Non-proportional structural damping
(dl = 0.3^ , d2-6 = 0 , i.e. a single damper between and ground)

r i
'957(1+ 0.0670 0 0

0 3354(1+ 0.0420 0
0 0

0.463(— 5.5°) 0.217(173°)
0.537(0°) 0.784(181°)
0.636(1.0°) 0.492(-1.3°)

6690(1+ 0.0780
1.321(181°)
0.316(-6.7°)
0.142(— 3.1°)
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NOTES:
(i) Each mode has a different damping factor.
(ii) All eigenvector arguments within 10° of 0° oi

modes are almost ‘real’).
f 180° (i.e. the

Model 2

-1.Okg 7n3=1.05 kg

m2 = 0.95 kg =k2 = £3 = £4 = / - =1.0xl03 N/m

Case 2(a) — Undamped

'999 0 0 0.577 -0.602 0.552

kb 0 3892 0 ; [®]= 0.567 -0.215 -0.827
0 0 4124 0.587 0.752 0.207

NOTE: this system has two close natural frequencies.

Case 2(b) — Proportional structural damping (dj = 0.05^)

kb
999(1+ 0.050 0

0 3892(1+ 0.050
0 0 1124(1

0
0
+ 0.050

[®]=
0.577(0°) 0.602(180°) 0.552(0°)
0.567(0°) 0.215(180°) 0.827(180°)
0.587(0°) 0.752(0°) 0.207(0°)

Case 2(c) — Non-proportional structural damping
(dj = 0.3/q, d2_§ = 0 )

kb
1006(1+ 0.100 0 0

0 3942(1+ 0.0310 0
0 0 4067(1+ 0.0190

D.578(- 4°) 0.851(162°) 0.685(40°) '
0.569(2°) 0.570(101°) 1.019(176°)
0.588(2°) 0.848(12°) 0.560(-50°)
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2.6.2 Forced Response Solution — FRF Characteristics
We turn next to the analysis of forced vibration for the particular case of
harmonic excitation and response, for which the governing equation of
motion is:

|[k]+ i [n]- co2 (2.63)

As before, a direct solution to this problem may be obtained by using the
equations of motion to give:

{*}= (j^+^-a2 [a(®)]{F} (2.64)

but again this is very inefficient for numerical application and we shall
make use of the same procedure as before by multiplying both sides of
the equation by the eigenvectors. Starting with (2.64), and following the
same procedure as between equations (2.38) and (2.40), we can write:

(2.65)

and from this full matrix equation we can extract any one FRF element,
such as a^(co) , and express it explicitly in a series form:

N
aj*(«>) = E

r=l
2 2 2

C0r -© +lT|r(»r
(2.66)

which may also be rewritten in various alternative ways, such as:

N

r=l

('VjrX'Vkr)
( 22*2C0r — CO +tT|r C0f

or

N rAjk
2 2- 2cor —CO +lT]r cor

In these expressions, the numerator (as well as the denominator) is now
complex as a result of the complexity of the eigenvectors. It is in this
respect that the general damping case differs from that for proportional
damping.
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2.6.3 Excitation by a General Force Vector
2.6.3.1 Operating deflection shape (ODS)
Having derived an expression for the general term in the frequency
response function matrix, a (co) , it is appropriate to consider next the
analysis of a situation where the system is excited simultaneously at
several points (rather than at just one, as is the case for the individual
FRF expressions).

The general behaviour for this case is governed by equation (2.63)
and the solution in (2.64). However, a more explicit (and perhaps useful)
form of this solution may be derived from (2.64) — although not very
easily! — as:

(2.67)

This equation permits the calculation of one or more individual
responses to an excitation of several simultaneous harmonic forces (all
of which must have the same frequency but may vary in magnitude and
phase) and it may be seen that the special case of one single response to
a single force (a frequency response function) is clearly that quoted in
(2.66). The resulting vector of responses is sometimes referred to as
forced vibration mode or, more commonly, as an operating
deflection shape (ODS). When the excitation frequency is close to one
of the system’s natural frequencies, the ODS will usually reflect the
shape of the nearby mode because one term in the series of (2.67) will
dominate, but will not be identical to it because of the contributions,
albeit small, of all the other modes.

2.6.3.2 Pure mode excitation 1 — damped system normal modes
There are a number of cases of multi-point harmonic excitation of
special interest which are worth mentioning here. These are generally
associated with the notion that by carefully choosing or tuning the
vector of individual forces it is possible to set up a response of the
structure which is entirely controlled by a single normal mode of the
structure. When we enter this domain, we sometimes run into
difficulties of nomenclature, especially in respect of the meaning of the
term ‘normal mode’. As explained earlier in this work, the normal
modes are the characteristic modes of the structure in its actual,
damped, state. While it is possible to talk of the modes ‘that the
structure would have if the damping could, by some magic, be removed’,
these are not the ‘normal’ modes of the structure in any strict sense.
They may be referred to as the ‘normal modes of the associated
undamped structure’ and it is true that they are properties of some
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interest because in most cases of test-analysis comparison, the
analytical model will be undamped and so there is a desire to be able to
extract the test structures 'undamped' modes from the test data in order
to effect a direct comparison between prediction and measurement.

So, we find ourselves seeking procedures which would enable us to
identify the normal modes of the structure directly, one by one, by
generation of a suitable excitation force vector, {F}.

The first of these cases that we shall describe is the genuine normal
mode excitation, in which an excitation vector {F} is sought such that
the response, {X} , shall consist of a single modal component so that all
terms but one in the summation of (2.67) shall be zero. It can be seen
that this situation can be attained if the excitation vector {F}s is
chosen such that the product {<|>r}7'{F}s = 0 for all terms except r = s. If
this can be achieved, then the said excitation vector generates a
response in just mode s. Depending upon the exact damping conditions,
this exclusive excitation vector may be more or less easy to define, and
indeed, its elements may well be complex (i.e. they will each have
different phases) but it will always exist.

2.6.3.3 Pure mode excitation 2 — associated undamped system
normal modes

It is also worth mentioning another special case of some interest:
namely, that where the harmonic excitation is described by a vector of
mono-phased forces. Here, the complete generality admitted in the
previous paragraph is restricted somewhat by insisting that all forces
have the same frequency and phase, although their magnitudes may
vary. What is of interest in this case is to see that there exist conditions
under which it is possible to obtain a similarly mono-phased response
(the whole system responding with a single phase angle). This is not
generally the case in the solution to equation (2.67) above.

Thus, let the force and response vectors be represented by

{/•}=[f^
(2.68)

where both {F} and {X} are vectors of real quantities, and substitute
these into the equation of motion, (2.63). This leads to a complex
equation which can be split into real and imaginary parts to give:

((-O)2[M]+[X])COS0 + [D]sine){x}= {#}
((-co2[m]+[x])sin9 — [D]cose){x}= {0}

(2.69)
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The second of this pair of equations can be treated as an eigenvalue
problem which has ‘roots’ 0S and corresponding ‘vectors’ {k}s . These
may be inserted back into the first of the pair of equations (2.69) in
order to establish the form of the (mono-phased) force vector necessary
to bring about the (mono-phased) response vector described by {k}s .
Thus we find that there exist a set of N mono-phased force vectors each
of which, when applied as excitation to the system, results in a mono¬
phased response characteristic.

It must be noted that this analysis is even more complicated than it
appears at first, mainly because the equations used to obtain the above
mentioned solution are functions of frequency. Thus, each solution
obtained as described above applies only at one specific frequency, <bs .
However, it is particularly interesting to determine what frequencies
must be considered in order that the characteristic phase lag (0)
between (all) the forces and (all) the responses is exactly 90°. Inspection
of equation (2.69) shows that if 0 is to be 90°, then that equation reduces
to:

(-o2 [M]+ 0 (2.70)

which is clearly the equation to be solved to find the undamped system
natural frequencies and mode shapes. Thus, we have the important
result that it is always possible to find a set of mono-phased forces
which will cause a mono-phased set of responses and, moreover, if these
two sets of mono-phased parameters are separated by exactly 90°, then
the frequency at which the system is vibrating is identical to one of its
undamped natural frequencies and the displacement ‘shape’ is the
corresponding undamped mode shape.

This most important result is the basis for many of the multi-shaker
test procedures used (particularly in the aircraft industry) to isolate the
undamped modes of structures for comparison with theoretical
predictions. It is also noteworthy that this is one of the few methods for
obtaining directly the undamped modes as almost all other methods
extract the actual damped modes of the system under test. The physics
of the technique are quite simple: the force vector is chosen so that it
exactly balances all the damping forces, whatever these may be, and so
the principle applies equally to other types of damping.

2.6.4 Postscript
It is often observed that the analysis for hysteretic damping is less than
rigorous when applied to the free vibration situation, as we have done
above. However, it is an admissible model of damping for describing
harmonic forced vibration and this is the objective of most of our
studies. Moreover, it is always possible to express each of the receptance
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(or other FRF) expressions either as a ratio of two polynomials (as
explained in Section 2.3) or as a series of simple terms such as those we
have used above. Each of the terms in the series may be identified with
one of the ‘modes’ we have defined in the earlier free vibration analysis
for the system. Thus, whether or not the solution is strictly valid for a
free vibration analysis, we can usefully and confidently consider each of
the uncoupled terms or modes as being a genuine characteristic of the
system. As will be seen in the next section, the analysis required for the
general case of viscous damping — which is more rigorous — is
considerably more complicated than that used here which is, in effect, a
very simple extension of the undamped case.

2.7 MDOF SYSTEMS WITH VISCOUS DAMPING —
GENERAL CASE

2.7.1 Free Vibration Solution — Complex Modal Properties
We turn now to a corresponding treatment for the case of general
viscous damping. Exactly the same introductory comments apply in this
case as were made at the beginning of Section 2.6 and the only
difference is in the specific model chosen to represent the damping
behaviour.

The general equation of motion for an MDOF system with viscous
damping is:

[Mp}+[cJi}+[KM4} (2.71)

As before, we consider first the case where there is zero excitation in
order to determine the natural modes of the system and to this end we
assume a solution to the equations of motion which has the form:

(2.72)

Substituting this into the appropriate equation of motion gives:

(?M+s[c]+|4x}={o} (2.73)

the solution of which constitutes a complex eigenproblem, although one
with a somewhat different solution to that of the corresponding stage
for the previous case with hysteretic damping. In this case, there are 2N
eigenvalues, sr (as opposed to N values of X2r before) but these now
occur in complex conjugate pairs. (This is an inevitable result of the fact
that all the coefficients in the matrices are real and thus any
characteristic values, or roots, must either be real or occur in complex
conjugate pairs.) As before, there is an eigenvector corresponding to
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each of these eigenvalues, but these also occur as complex conjugates.
Hence, we can describe the eigensolution as:

and r=l,N (2.74)

It is customary to express each eigenvalue sr in the form:

sr — + ^1 Cr J
where ar is the ‘natural frequency’ and Qr is the critical damping ratio
for that mode. Sometimes, the quantity mr is referred to as the
‘undamped natural frequency’ but this is not strictly correct except in
the case of proportional damping (or, of course, of a single degree of
freedom system).

This eigensolution possesses orthogonality properties although
these, also, are different to those of the earlier cases. In order to
examine these properties, we first note that any eigenvalue/eigenvector
pair satisfies the equation

(Sr2M+sr[c]+Hv}r={0} (2.75)

and then we pre-multiply this equation by so that we have:

[M]+ sr [c]+ = 0 (2.76)

A similar expression to (2.75) can be produced by using sq and :

<2-77)

which can be transposed, taking account of the symmetry of the system
matrices, to give:

/ \ (2.78)(<(^«jc]+K)-(or
If we now postmultiply this expression by {vp}r and subtract the result
from that in equation (2.76), we obtain:



76

-Ml*=o (2.79)

and, provided sr and sq are different, this leads to the first of a pair of
orthogonality equations:

(sr + sq [M [C]{v}r = 0 (2.80a)

A second equation can be derived from the above expressions as follows:
multiply (2.76) by sq and (2.78) by sr and subtract one from the other
to obtain:

- Mq = 0 (2.80b)

These two equations — (2.80a) and (2.80b) — constitute the
orthogonality conditions of the system and it is immediately clear that
they are far less simple than those we have encountered previously.
However, it is interesting to examine the form they take when the
modes r and q are a complex conjugate pair. In this case, we have that

(2-81)

and also that

H = (2.82)

Inserting these into equation (2.80a) gives

-2^r [MM = 0 (2.83)

where { denotes the complex conjugate (Hermitian) transpose, from
which we obtain:

2m ,
r r "MWL ~ (2.84)

Similarly, inserting (2.81) and (2.82) into (2.80b) gives
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from which

2 = = hr_
r’ ’ mr

(2.85)

(2.86)

In these expressions, mr , kr and cr may be described as modal mass,
stiffness and damping parameters, respectively, although the meaning
is slightly different to that used in the other systems.

2.7.2 Forced Response Solution
in this stage of the analysis, this case of general viscous damping again
presents a more complex task. Returning to the basic equation, (2.71),
and assuming a harmonic response:

{x^H^ (2.87)

we can write the forced response solution directly as

(2.88)

but as in previous cases, this expression is not particularly convenient
for numerical application. We shall seek a similar series expansion to
that which has been used in the earlier cases of undamped,
proportionally-damped and hysteretically-damped systems but now we
find that the eigenvalue solution presented in the above equations is not
directly amenable to this task. In fact, it is necessary to recast the
equations into the state-space form in order to achieve our goal.

Define a new coordinate vector {u} which is of order 2N and which
contains both the displacements {x} and the velocities {x}:

(2.89)

Equation (2.71) can then be written as:

[C : M ]tvx2v {"Izjvxi + [K : 0]{M} = {O}^ (2.90)
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However, in this form we have N equations and 2N unknowns and so
we add an identity equation of the type:

[A7 : 0]{z>} + [0 : = {0} (2.91)

which can be combined to form a set of 2N equations

C
M

(2.92a)

which can be simplified to:

[<}+[4«}={o} (2.92b)

These equations are now in a standard eigenvalue form and by
assuming a trial solution of the form {u} = {L7}est , we can obtain the 2N
eigenvalues and eigenvectors of the system, sr and {0}r , which together
satisfy the general equation:

(2.93)

These eigenproperties will, in general, be complex although for the
same reasons as previously they will always occur in conjugate pairs.
They possess orthogonality properties which are simply stated as

[©FM^R]
[©FWbM

(2.94)

and which have the usual characteristic that

sr=—— ; r =1,27Var (2.95)

Now we may express the forcing vector in terms of the new coordinate
system as:

-
F

0
(2.96)
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and, assuming a similarly harmonic response and making use of the
previous development of a series form expression of the response
(equations (2.35) to (2.41)), we may write:

iaX 2Nxl
^ar(ia-sr) (2.97)

However, because the eigenvalues and vectors occur in complex
conjugate pairs, this last equation may be rewritten as:

X ] N
-

r=l
(2.98)

At this stage, it is convenient to extract a single response parameter,
say X j , resulting from a single force such as — the receptance
frequency response function, — and in this case, equation (2.98)
leads to:

(2.99)

Using the fact that sr = a>r (-1^.+ this expression can be
further reduced to the form:

-<»z + 2iacor £ (2.100)

where the coefficients R and S are obtained from:
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{r7?*}= 2kRe{rG*}-Im{rGj7^
{rSj= 2Re{rG*};
{r^}= (W<h-H

(2.101)

The similarity between this expression and that derived in Section 2.5
(equation (2.66)) is evident, the main difference being in the frequency¬
dependence of the numerator in the case of viscous damping. If we
confine our interest to a small range of frequency in the vicinity of one
of the natural frequencies (i.e. ffl ~ <Br), then it is clear that (2.100) and
(2.66) are very similar indeed.

2.7.3 Excitation by General Force Vector
Although we have only fully developed the analysis for the case of a
single force, the ingredients already exist for the more general case of
multi-point excitation in the equations (2.96) to (2.98). The particular
case of excitation by mono-phased forces has effectively been dealt with
in Section 2.6 because it was there shown that the results obtained
would apply to any type of damping.

2.8 MODAL ANALYSIS OF ROTATING STRUCTURES
2.8.1 General Features of Rotating Structure Dynamics
2.8.1.1 Nonsymmetry in system matrices
All the cases considered until now have contained certain properties
which make them less than the most general type of linear systems that
can be encountered. There is another class of system which we should
consider in this work, and that is the class that includes components in
the structure under consideration which are rotating and which are
therefore subject to forces in addition to those already considered in our
analysis so far. These additional forces include, for example:

• gyroscopic forces;
• rotor-stator rub forces;
• electromagnetic forces;
• unsteady aerodynamic forces;
• time-varying fluid forces;

and any or all of these can have the effect of destroying the symmetry of
the system matrices used to define the equations which govern the
motion of the system. Symmetry of the mass, stiffness and damping
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matrices is a feature which has been present in all cases we have dealt
with so far. As a consequence of this feature, the solutions we have
made for the simpler systems have themselves possessed certain
simplicities and symmetries, such as reciprocity, which will no longer
apply to this new class of system, examples of which are referred to as
‘non-self-adjoint’ (NSA) systems.

We shall now extend our studies of the underlying theory of linear
systems into this new area, with the specific interest focused on
structures which contain rotating components. Although it can be noted
that other systems may well exist that exhibit similar features, we shall
not consider these in detail here.

In the most general case treated to date, we have already seen that
the eigenvalues and eigenvectors (natural frequency, damping factor
and mode shape for each mode) will all be complex: the complexity of
the eigenvalues resulting from the damped nature of the modes and the
complexity of the mode shapes signifying an arbitrary distribution of
the damping within the structure. However, in all those earlier cases
the system matrices were symmetric, as were the frequency response
function matrices. Further generalisation of the systems being
considered can lead to non-symmetric system matrices, particularly in
the stiffness and so-called damping matrices. This, in turn, leads to a
situation where there are two sets of eigenvectors, referred to as the
‘left-hand’ and the ‘right-hand’ vectors. The right-hand vectors are those
generally associated with the mode shapes, while the left-hand vectors
are the set which are obtained by analysing the transformed equations
and are associated with patterns of forces (rather than of responses)
associated with a single mode. Both sets of vectors are required for a full
reconstruction or description of the system’s dynamic behaviour.

Two special cases of non-symmetric matrices are worth mentioning
at this stage because they frequently occur in rotating structure
analysis: the first is where there is a skew-symmetric component in the
‘damping’ matrix and the second where there is a skew-symmetric
component in the stiffness matrix. The first of these conditions arises
directly due to the existence of gyroscopic forces which have a velocity¬
dependent characteristic (hence their appearance in the ‘damping’
matrix) although they do not constitute dissipative effects as do true
damping terms. The second case can arise from the behaviour of
hydrodynamic or other bearings, or from the presence of ‘internal’
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damping* in the rotor.
In the first of these two cases, if the mass and stiffness matrices are

symmetric, and the ‘damping’ matrix (or, more correctly, the velocity¬
dependent matrix) is skew-symmetric — which happens if there are
only gyroscopic terms present — then the eigenvalues of the system will
be real (i.e. the system will be undamped) while the mode shapes will be
complex, and heavily so. Furthermore, the left-hand eigenvectors are
found to be the complex conjugates of the right-hand vectors.

In the second case, if the mass matrix is symmetric, and the
damping matrix is zero, then skew-symmetry in the stiffness matrix
results in complex eigenvectors and complex eigenvalues, the latter
indicating a system which is effectively damped, although it will be seen
that such modal damping can be either positive (indicating stability) or
negative (indicating an unstable system), depending upon the particular
conditions which apply in each case. Once again, the left-hand
eigenvectors are the complex conjugates of the right-hand eigenvectors.

2.8.1.2 Stationary and rotating frames of reference
As a further complication, in addition to the loss of symmetry in the
system matrices, some types of rotating structure are found to have
equations of motion with time-varying coefficients in place of the
constant coefficients we have had previously. For these cases, there are
no fixed modes as such, and we shall need to extend our methods of
analysis, as well as those of measurement, to be able to apply the
techniques of modal analysis and testing to this important class of
structure. It will be seen below how geometrical symmetry in the form
of either the rotating or the stationary structures (not related to the
symmetry in the describing system matrices), and the choice of
coordinate system used to describe the motion, have a direct effect on
this feature.

We have hitherto written the equations of motion for our various
systems in terms of coordinates which are referred to fixed axes but now
there exists the choice of using these same coordinates or of using
coordinates which are set in axes that rotate with the structure. In
practical terms, this is equivalent to measuring vibration with
transducers that are fixed in space (e.g. inductance displacement
transducers) or with those which are fixed to the rotating component
(e.g. strain gauges).

‘Internal’ and ‘external’ damping refers to damping elements which
are, respectively: (a) internal to and (b) external to the rotating
component. These derive from (a) joints, splines etc in the rotor
assembly, as well as to its inherent material damping properties,
and (b) bearings and other externally-attached devices.
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Fig. 2.18 illustrates the choice. Coordinates in the fixed axis set are
denoted by xg , yg and zg (usually simplified to x, y and z) while those
in the rotating axes frame are referred to as: xr , yR and zr .
Transformation from one set to the other is relatively straightforward,
as will be shown in the following paragraphs, but can result in
significantly different equations of motion.

Fig. 2.18 Coordinate systems in stationary and rotating axes sets

2.8.2 Dynamic Analysis of Symmetric Rotor with Gyroscopic
Effects

2.8.2.1 Non-rotating system properties
As in earlier sections of the book, it will be helpful to approach the more
general types of rotating structures via a simple example and that can
be provided by a simple model of a symmetrical rotor supported in
bearings, as illustrated in Fig. 2.19. This system consists of a rigid disc
mounted on the free end of a rigid shaft of length L, the other end of
which is effectively pin-jointed (by the bearings which hold it there). At
the ‘free’ end, the rotor is supported by a flexible bearing, represented
by vertical and horizontal stiffnesses, ky and kx , respectively. The
polar moment of inertia of the disc and shaft is J, while its moment of
inertia about a lateral axis through 0 is Iq . The rotor, when spinning,
has an angular velocity of Qz , anticlockwise viewed from the free end of
the shaft.

The two equations of motion for this simple structure can be written
as follows, starting with the simplest case possible where the rotation
speed is zero and there is no damping or external forcing:



84

Fig. 2.19 Simple 2D0F rotor-stator system

(Iq I L)x + kxL x =0
(2.102)

(lQlL)y+ kyLy =0

Solution of these uncoupled equations of motion reveals the expected
two modes of vibration, one in the vertical plane and the other in the
horizontal plane, both of which will have the same natural frequency if
kx and ky are identical at k, as will be the case for the fully-
symmetrical system. (Comments made earlier in Section 2.4.3
concerning systems with two or more identical natural frequencies
should be noted.)

Extension of the model to include ‘external’ dampers, cx and cy ,
alongside the two springs and vertical and horizontal external forces
applied at the bearing location, fx(t) and fy(t), leads to the following
equations for forced vibration and, in turn to the derivation of
expressions for the four FRF properties for this 2DOF system:

(Iq/L)x +cxL x +kxL x = fx(t)L

(I0ILyy +cyL y +kyL y = fy(t)L
(2.103)
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which, for harmonic vibration where fx(t) = Fxeimt;x(/) = Xeiat; etc. lead
to:

arr(&) = X I Fx I2
(kxL2 + i®cxL2-^Iq)

T2ayy (0) = y I Fy = - — -(kyI? + iacyL2 -02ZO)
(2.104)

axy(ffl) = a3,x(ra) = 0

2.8.2.2 Modes of the undamped rotating system
If we now return to the basic system, with no damping and no external
excitation, and allow the disc to spin at speed , then there will be
some additional forces generated by the fact that, when vibrating in the
x and/or y directions, the disc is rotating simultaneously about more
than one axis. These forces are due to the Coriolis accelerations set up
by this complex motion and are usually referred to as ‘gyroscopic’ forces.
Essentially, simultaneous rotation about the z-axis (at angular speed

) and about the y-axis (with angular speed Qy=x/L) can only exist if
there is a moment applied to the system about the third (x-) axis with a
magnitude Mx = JQzx/ L . When added to the equations of motion, this
moment, and its counterpart for the other combination of rotations, has
the effect of coupling the two equations, which now take the form:

(Iq I L)x + I L)y + kxL x = 0

(Iq I L\y-(JQZI L)x + kyL y =0

or

(/()/■£-)
0

0 Jxl 0
(/0/L)jy+[-jQZ/i

/ L
0

/?XL
0

0 fx

kyL_[y
01
0J

This equation is more conveniently written as:
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(Z0/L2) 0 pl 0
o (Iq/l2) M+ -jq2/l2

JQ.ZIL2
0

(2.105)

Note that these equations include velocity-dependent terms (although
these are not damping effects) but that they are not symmetric: indeed,
the velocity-dependent matrix is skew-symmetric. The free vibration
solution of these equations reveals that there are still two modes of
vibration and that now they have different natural frequencies, even
when the two bearing stiffnesses are identical. Furthermore, it can be
seen that these are still the natural frequencies of an undamped system,
even though there are velocity-dependent forces present. It will also be
noted that this type of equation has two different sets of eigenvectors —
the so-called ‘left-hand’ and ‘right-hand’ sets, the latter representing the
mode shapes themselves while the former are associated with preferred
excitation patterns.

(a) Symmetric stator
The essential solution for the case where the vertical and horizontal
stiffnesses are identical, and both equal to k, is as follows. Assume, as
before, a simple harmonic solution of the type:

x = Xei<at
(2.106)

y=Yeia,t

which, applying the symmetry of the stator so that kx = ky = k , leads to:

[k-a2I0/L2
I- i&JClz / L2

(icoJQz/L2)lp] p)(fe-co2Zo/i2)jlyJ W (2.107)

and this, in turn, to the following characteristic equation:

(kL2)2 -&2(2IQkL2 +J2^l2)+ &4ll =0 (2.108)

This equation can be solved to find the natural frequencies, raj and ®2 ,
using the following notation, to give:
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®i =®q -|(y^);®2 =®q +|(y^)

where

2 kL2 J 2 2 1/ 0x2®o-~7— ; y-^- ; ®q - ®o + 4^)
2o lo

(2.109)

Fig. 2.20(a) shows the dependence of the two natural frequencies on the
speed of rotation, Qz , indicating the two relevant asymptotes, <o = yQ
and co = 0.5yQ , respectively. Also shown is the once-per-rev line, co = Q
(sometimes referred to as the ‘first engine order’ (1E0) line), and the
two critical speeds where this line intersects the two natural frequency
lines, at

and Q2 = - -Vo7!)V(1+ y)
(2.110)

respectively.
Completion of the free vibration solution reveals that the mode

shapes corresponding to the two natural frequencies are complex —
entirely complex, in fact, in that the two elements are exactly in
quadrature with each other. The right-hand eigenvector for the lower-
frequency of the two modes, r = 1, can be shown to take the form:

{§rh}i =

while that for the second mode, r = 2, is:

The interpretation of these two complex mode shapes is
straightforward: the first one (which corresponds to the lower natural
frequency) represents a motion which constitutes a circular orbit of the
disc centre which is backwards with respect to the spinning motion of
the rotor, while the second mode shape, corresponding to the higher
natural frequency, represents a forward circular orbiting motion, in the
same direction as the spinning of the disc itself. Fig. 2.20(b) seeks to
illustrate these mode shapes and further explanation of the
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(b)

Fig. 2.20 Modal properties of symmetric 2DOF rotor/stator system,
(a) Natural frequencies; (b) Mode shapes

interpretation of complex modes in terms of stationary and rotating
components is provided in later sections of the book.

These two mode shapes combine to form the matrix of the RH
eigenvectors, which can be compared with its left-hand
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counterpart, , and shown to observe the orthogonality conditions
for this type of system, which are of the rather complicated form
previously encountered in the case of general viscously-damped systems
(see Section 2.7, equations (2.80)).

(b) Non-symmetric stator
It is relatively straightforward to extend the above analysis to include
the case where the two bearing (stator) stiffnesses are not identical, but
have the relationship:

kY = akvJ

In this case, the two system natural frequencies differ from those
quoted previously, as illustrated in Fig. 2.21(a), but the main difference
is seen in the two mode shapes, which once again reflect backward and
forward orbits but this time of an elliptical rather than circular form, as
shown by the relevant right-hand eigenvectors:

and which are illustrated alongside the natural frequency plot in
Fig. 2.21(b).

2.8.2.3 FRFs of the rotating structure with external damping
If we extend our analysis further, to include external damping and
excitation forces, then we can — as before — derive expressions for the
FRF characteristics of this system. There are again four FRFs
applicable at the bearing support point, but this time they contain
important differences from those developed earlier for the non-spinning
case. Now, we find that the equations of motion for damped forced
vibration of the symmetric system can be written as:

and the corresponding expressions for the same four FRFs as shown
previously are found by setting fx and fy to be Fxel03t and Fyeiat ,
respectively, to yield:
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axx(co)=X/Fx

(kl?+i&cl? — a>2Z0)
~ (k2L2+2iackL2 -®2(c2L2+2I0k+(JQz I L)2)-2ia3cI0 +co4 (/0 IL)2)

oyy(.a)=Y/Fy=axx(a) (2.112)

xy (®) — yx (® )

iaJClz
(k2L2 F2i&ckL2 -®2(c2L2+2IQk^JO.^

Plots of these FRFs are shown in Fig. 2.22. The loss of reciprocity
between axy(co) and aJ,x(co) is visible in these plots and is evident from
the formula, as is the fact that a force in the vertical (y-) direction now
generates a response in the orthogonal horizontal (x-) direction, and vice
versa, in direct contrast to the results which apply without any spinning
of the rotor. Also clear from the plots is the high degree of complexity of
the mode shapes, as witnessed by the significant imaginary part of the
transfer FRF curves.

Similar expressions apply to the more general case in which the
stator stiffnesses are not identical in the two planes, although the
differences are of detail only, and bring no additional features.

Of course, the response of the system to the simultaneous
application of several forces at the same frequency can be derived by
appropriate superposition of the relevant components. Such a situation
could be envisaged if there were simultaneous horizontal and vertical
forces applied to the bearing in the current example. It also applies in
the important case of internally-generated out-of-balance forces, which
vzill be dealt with in the next section.

2.8.2.4 Response of externally-damped rotating structure to
synchronous and non-synchronous out-of-balance
excitations

In addition to the classical forced response analysis which yields the
FRF properties of the system, it is also of interest to undertake a similar
analysis for the particular case of an excitation which is provided by an
out-of-balance force. Such forces may be of a synchronous nature, when
they result from an out-of-balance mass on the rotating component
itself, or of a non-synchronous nature, when derived from a similar out-
of-balance on a co- or counter-rotating shaft.
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(b)

Fig. 2.22 FRF properties for symmetric 2D0F rotor/stator system

The analysis is first presented for the simpler and more common
case (synchronous out-of-balance) and then extended to the more
general non-synchronous case.

If we suppose there to be an out-of-balance of magnitude (mr) ,
which rotates with the rotor, then this will develop forces in the fixed-
axis x and y directions of the form:

Fx = FOOB COS(Q0 ; Fy = FOOB sin (Q0
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where

Fqob =mr^2

(2.113a)

This multiple excitation case can be defined as an harmonic force vector,
{F}, which has the form:

{F}=
fF1 x
FI y

• = foob (2.113b)

(a) Synchronous excitation: symmetric stator
It can be shown that such an excitation vector will generate a similarly
harmonic response which can be expressed as {X Y}7 which, in the
case of the symmetric stator system, is:

*OOBe

where

L2
/0(a>02- ^(l-y]) (2.114)

From this expression we can see the interesting result that only one of
the two modes of the system is excited into resonance at the appropriate
speed of rotation. As the rotation speed (and thus the excitation
frequency) increases and passes through the lower natural frequency,
(Ci (with the corresponding critical speed, O] , as given in (2.110)) it is
found that no resonant response is generated at all. In contrast, when
the speed/frequency reaches the second natural frequency, a clear
resonance condition is achieved in this case, see Fig. 2.23(a). This
reflects the well-known physical phenomenon that out-of-balance
excitation can excite resonance only in a forward whirl mode for a
symmetrical rotor/stator system, and not at all in a backward whirl
motion, which is just what the first mode of vibration of this system is.

Closer inspection of this result shows it to be entirely predictable.
The force vector in this case can be seen to be orthogonal to the mode
shape vector of the first mode and, under such conditions, no response
would be expected from that mode, even when the excitation and
natural frequencies coincide. The second mode shape vector, however, is
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not orthogonal to the excitation force vector and so a response is found
in that case.

(b) Synchronous excitation: non-symmetric stator
The situation is different, in the more general case where the stator is
not symmetric: i.e. when kx * ky . Here, the excitation force vector
(which is unchanged from the previous case) is orthogonal to neither
mode shape vector and so a resonance is expected at both critical
speeds. This prediction is confirmed by the typical results shown in
Fig. 2.23(b).

(c) Non-synchronous excitation
It is possible to envisage a situation where an out-of-balance excitation
force is generated by a second rotor or disc which is spinning at a
different speed to the test rotor: say, at a speed of PQ . In this case, the
only difference lies in the frequency and magnitude of the excitation:
the essential results are the same as for the synchronous case, as
illustrated on the example shown in equation (2.115):

A \F W
-lA

where

(2.115)
Jo [®o -P^2(P-rl

2.8.2.5 Analysis using coordinates in rotating frame of
reference

At the outset of this analysis, we elected to write the equations of
motion for the above system using ‘stationary’ coordinates, xg and yg ,
these being deflections of the disc centre in the fixed-in-space horizontal
and vertical directions, respectively. In rotating structures there is a
natural alternative to this choice of coordinates: namely, to use the
coordinates which are fixed in the rotor, and which rotate with it. These
are identified here as x# and yR , as opposed to xg and yg (which are
generally abbreviated to plain x and y, as here).

Fig. 2.18 shows the two sets of coordinates and from this diagram it
is a simple matter to define the transformation matrices which allow us
to convert the equations of motion from one set to the other:
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c -s

s c
XR\ and IM
yR J l^J

c s

-s c

x
y

where

c = cos(Qt) ; s = sin(QJ) (2.116)

Using the normal transformation process for equations of motion, we
can rewrite the equations shown above in (2.105) to an alternative
version in terms of the rotating coordinates, xr and , to obtain*:

00

cs(ky -kx)

XR
yR^0

L2

L2
0

/0Q2 JQ2
— +

L2 L2

2QZ0 JQ

L2
~

L2

2QI0 JO.
I2 I2

0

as(ky -kx)

I0Q.2 JQ2 2 , 2F + k vc +kYsL2 L2 y

(2.117)

Although these equations simplify further for the case of a
symmetric stator to the form shown below, they have been written in
this way in order to introduce a feature which will take on greater
importance in the next section. It can be seen in equation (2.117) that
some of the coefficients in the equations of motion written in terms of
these rotating variables are influenced by the time-varying terms
introduced by the rotation of the system. In the particular case where
the stator is symmetric with kx = ky = k, all the coefficients are
constant and equation (2.117) simplifies to:

* See Appendix 4 for details of the transformations between
stationary and rotating coordinates.



97

2OZq
XRL2
yR0

0

+
L2

JQ2 ,
+ k

L2

(2.118)

This equation shows the system matrices to have constant coefficients
in this symmetric case but we have been alerted to the possibility that
this will not always be the case, particularly if the stator does not have
symmetric properties. Nevertheless, there are yet more features to be
teased out of this simple example.

Clearly, these equations describe the dynamic behaviour of the same
system as do the equations in (2.105), yet they are different and we
might suppose that the eigensolution of (2.118) will differ from that of
(2.105). Indeed, this is the case and it can be shown that the two
eigenvalues of the last equations are:

“i =®n -|(y^)+Q : ®2 =®n +|(yq)-q (2.119a)

which can be compared with the corresponding values obtained earlier:

®1 = -|(y^) : “2 = +|(yq) (2.119b)

the primary difference being the addition or subtraction of the rotation
speed, Q, which reflects the difference between the two different axes
sets. The eigenvectors (mode shapes) remain unchanged.

Finally, it is interesting to examine the effect of transformation to
the rotating frame of reference of the excitation forces that are applied
in the stationary frame. In other words, to determine how the rotating
structure ‘sees’ an excitation which is applied externally. If we suppose
that there is a single point excitation force, Fxg = F0 cosat and that
Fyg = 0 , then we can transform the excitation vector from the

stationary frame of reference to the rotating frame, as follows:
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From this we note the interesting, but obvious, result that a stationary
harmonic excitation at frequency co is seen by a structure rotating at
speed, Q, as an excitation with two frequency components: (co-Q) and
(cd + Q) . Accordingly, the structure will respond at these two apparent
frequencies so that it will be difficult to derive a conventional frequency
response function (FRF) under these circumstances, where the response
is measured on the structure and the excitation is measured fixed in
space. Clearly, both response and excitation must be measured in the
same frame of reference for such response functions to be obtained.
Later, we shall develop a generalisation of this feature (see Section
2.8.4.3).

2.8.2.6 Effects of damping in both stationary and rotating
components

In the preceding sections, we referred to two types of damping —
‘internal’ and ‘external’ — but have only included the latter type in our
discussion so far. In the more general case where the rotor and the
stator are both flexible components, it is clearly possible for either or
both to possess damping as well as elasticity and inertia. We can see the
differing effects of internal and external damping by reverting to our
simple 2DOF example, and to the case of the equations of motion for the
symmetric stator case, described in terms of coordinates referred to the
rotating frame of reference, equation (2.118). If we take those equations
and introduce the extra terms which are generated by internal damping
elements, cj , assumed to be identical in the x and y directions and
which are effective in the rotating frame of reference (i.e. rotating with
the rotor), we obtain the following equation:
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We may now transform this equation of motion back to the coordinates
referred to the stationary frame of reference using the transformation in
(2.116) (see Appendix 4 for details of this process) to obtain:
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and if we then add some symmetrical external damping as well, cE , we
construct the most general case for this simple 2DOF system:

(Iq/I?) 0 1*1 CE+CI
0 (/o/£2)jM [-JQz/L2

J£lzIL2
CE +CJ

k £1^
-£izcj k (2.121c)

It can be seen in this equation that the internal and external damping
features have quite different effects, most notably by the presence of Cj
in the stiffness matrix, and in a skew-symmetric format. In the next
Section 2.8.3.2, we shall explore numerically the consequences of the
loss of matrix symmetry brought about by these two principle effects —
gyroscopic forces in the velocity-dependent matrix and internal damping
in the displacement-dependent matrix, but it can be noted here that the
former causes the eigenvectors to become complex (as we have already
seen) and the latter causes the eigenvalues to become complex,
sometimes with a negative real part (stable system) but sometimes with
a positive real part, indicating an unstable system. The deciding factor
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in determining the stability/instability condition relates directly to the
relative values of Cj, c^, cor and Q^, with the general feature that
instability is approached and encountered as Q2 increases to a critical
value. This shows the theoretical origins of the well-known practical
phenomenon that internal damping can cause instability in rotors
running at supercritical speeds (Q2 greater than ror ).

2.8.3 Dynamic Analysis of General Rotor-Stator Systems
2.8.3.1 Equations of motion for general rotor-stator systems
By now it is becoming evident that structures in rotating machines, and
their modal testing, may be much more complex than the relatively
simple cases described in the earlier sections of the book and it is
necessary to extend our analysis far beyond that stage in order to deal
with these cases. The complications which can arise include:

• non-symmetric bearing supports;
• observations in fixed- or rotating-coordinate systems;
• non-axisymmetric rotors;
• internal (rotating) and external (non-rotating) damping.

These, in turn, can give rise to a number of effects not found in the
simplest non-rotating structure, including:

• time-varying modal properties;
• response components at frequencies not present in the excitation

signal;
• instabilities (negative modal damping).

All of these need to be considered if modal analysis and testing is to be
applied to practical structures which contain rotating elements.

We have already seen in the preceding paragraphs how the
equations of motion for systems which include a rotating component are
prone (a) to lose the symmetry in the describing matrices (that we have
come to expect in conventional stationary structures), (b) to generate
complex eigenvalues and/or eigenvectors from nonsymmetry in the
displacement- and/or velocity-related system matrices, respectively, and
(c) to include some coefficients in these matrices which are time-varying
(instead of the constant coefficients that we have encountered
elsewhere). All of these features result in equations of motion which are
more complex in their solution and properties than we have described in
the earlier sections. It is appropriate here to seek to define the general
forms of the equation of motion to be encountered in systems with
rotating components, and of the solutions which will follow from these
different types of equation.
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We have seen that, when the most immediate feature which is
unique to rotating systems — the gyroscopic effect — is included in the
analysis, at least one of the matrices which describe the equations of
motion incurs a skew-symmetric component. We have also seen that a
similar result is found when including internal damping in the analysis:
then, the stiffness matrix incurs a skew-symmetric component. Thus, it
is an inherent feature of even the simplest systems with rotating
components that there will be a violation of the previously-standard
‘rule’ that the system matrices should be symmetric and so we must
expect in all cases of dynamic analysis of rotating structures that at
least one, if not more, of the system matrices will be non-symmetric.

A second complication was encountered in Section 2.8.2.5 where it
was found that, when the equations of motion of the simple 2DOF
system are expressed in coordinates which refer to the rotating frame of
reference, some of the coefficients in the system equations are time¬
varying. Such a feature presents particular difficulties for a modal
analysis as the conventional eigensolution procedure is based on the
premise that the matrices to be thus decomposed are populated by
constant coefficients — in other words that they are ‘linear, time-
invariant’ or LTI equations or matrices. These latest matrices represent
‘linear, time-dependent’ or L(t) equations and their eigensolution is non¬
standard. Indeed, the analysis of such equations is beyond the scope of
this work and the interested reader is referred to one of a small number
of specialised texts which do address this case [24]. Suffice it now to
observe here that the type of time-dependent system matrices just
encountered are those in which some of the coefficients are periodic,
with the rotation speed of the rotor, Q, being the basis of the periodicity.
The result of analysing such matrices is to establish a series of time¬
dependent (but specifically, periodic) eigenvalues and eigenvevctors.
However, even when obtained, these characteristic properties fall
outside the scope of what can be described by conventional structural
analysis and so such systems will not be amenable to treatment using
the standard tools of modal analysis or modal testing.

It is useful to identify the circumstances in which these two types of
equation might be encountered and this is summarised in the
accompanying table, which shows that the only case in which LTI
equations cannot be produced is for the extreme case of a non-
symmetric rotor supported in a non-symmetric stator. The other three
combinations can all be described by LTI equations, by adopting a
suitable choice of coordinate system.
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System Type Stationary
Coordinates

Rotating
Coordinates

R-symm; S-symm
R-symm; S-nonsymm
R-nonsymm; S-symm
R-nonsymm; S-nonsymm

LTI
LTI
L(t)
L(t)

LTI
L(t)
LTI
L(t)

If we confine our interest now to the LTI type of equations, we can see
that the equations of motion for the more general type of system might
be expressed in matrix form as follows:

M*}+[c]+[0(0®+ i[Z>]+[W®= M (2.122)

In this equation, the two speed-dependent matrices, [G] and [2?] are
both skew-symmetric, while all other matrices are symmetric. Solution
of the equations will follow different routes depending upon the specific
features in each case but in the classical example of viscous damping
only, we shall need to convert these N x N second-order differential
equations into 2N x 2N first-order equations, as already seen in Section
2.7, by creating two matrices, [A] and [B] :

[c]+[g(q)]] [mJ
L -M [o]J
1^]+[B(Q)]] [0]“
. [0] [Mj (2.123a)

which combine to provide the equation of motion:

Mu}+[BM={0} (2.123b)

In this equation, one or both of the system matrices is non-symmetric
and, as a result, the eigensolution will yield a single eigenvalue matrix
as usual, [sr] , and two sets of eigenvectors, [®l#] and [®/y/] , both of
which will be complex. This is the general case eigensolution for a
system with constant coefficients. In this general case, each complex
eigenvalue comprises the oscillation and decay rates (frequency and
damping) for one mode of vibration and the two corresponding
eigenvectors (RH and LH) will describe the mode shape and a normal
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excitation ‘shape’, respectively. In the particular case where there is no
clamping, the only non-symmetric matrix is [A] and that is skew-
symmetric with the result that the left-hand (LH) vectors are the
complex conjugates of the right-hand (RH) vectors. However, this is not
generally the case.

A numerical example for this type of system (symmetric rotor, but
non-symmetric support) is shown in Fig. 2.24 which displays the natural
frequencies of the two modes as a function of speed of rotation. It is
clearly seen that there are two modes, as before, and that one
represents forward whirl — the higher natural frequency — while the
other represent backwards whirl. In these cases, the mode shapes
reveal that the orbit of the whirl is not circular, but elliptical.

Fig. 2.24 Natural frequencies of MDOF rotor/stator system

Further study of the most general LTI system reveals that the FRF
properties of such a system may be derived from the modal properties
and that the receptance FRF matrix, [a(a>)], can be expressed as
follows:

[«(«)]=[0fiW][(sr -ico)]'^©^]11 (2.124)

from which it can be seen that the property of reciprocity which we have
observed in earlier cases no longer necessarily applies. Plots of some of
the FRF properties for the same case study as used for Fig. 2.24 are
included in Fig. 2.25.
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Fig. 2.25 FRF properties of MDOF rotor/stator system

2.8.3.2 Eigen-properties of general LTI system matrices
The previous subsections have revealed some trends that are to be
expected in the matrices which are generated for the equations of
motion of system with rotating components and it is appropriate here to
illustrate the properties of such matrices in a more general form than
has been shown previously.

The essential features of interest are those which result in a loss of
symmetry of the velocity-dependent or displacement-dependent
matrices (referred to loosely as the ‘damping’ and ‘stiffness’ matrices,
respectively). It may be readily seen that any matrix can be expressed
as the linear combination of a symmetric matrix and a skew-symmetric
matrix and it is convenient to think of these dynamic system matrices in
this way because most of the reasons for a loss of symmetry are, in fact,
the introduction of a degree of skew-symmetry — the gyroscopic forces
in the first case and the internal damping effects in the second. Thus it
is useful to examine first the effect of a skew-symmetric damping
matrix and then of a skew-symmetric stiffness matrix. These two effects
will be described and illustrated by representative numerical examples
based on the 2DOF system already studied.

(a) Skew-symmetry in the damping matrix
As we have already seen, the effect of introducing a skew-symmetric
damping matrix to otherwise symmetric system matrices is to generate
complex eigenvectors (mode shapes) but to retain real eigenvalues
(i.e. undamped natural frequencies with no decay component). A set of
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numerical examples based on the 2D0F system are shown in the Table
below. For the case where the three system matrices are described by:

i
0

-1
3

we obtain the following results for the second mode as AC (the extent of
skew symmetry) is varied from 0 to 1:

AC s2 X! X2
0.0 -0.75 + 1.85 i 1 -1.00
0.1 -0.68 + 1.88 i 1 -1.05 + 0.08 i
0.3 -0.52 + 1.94 i 1 -1.08 + 0.28 i
0.5 -0.37 + 1.99 i 1 -1.03 + 0.49 i
0.7 -0.23 + 2.04 i 1 -0.90 + 0.63 i
0.9 -0.07 + 2.08 i 1 -0.76 + 0.71 i
1.0 2.11 i 1 -0.69 + 0.73 i

(b) Skew-symmetry in the stiffness matrix
We can conduct a similar exercise for the second example, in which the
stiffness matrix is found to have a skew-symmetric element due to the
effect of internal damping. Thus, for the same basic 2DOF system, we
can introduce the following variable elements in the stiffness matrix:

which yields the results shown in the following table, again focusing on
the second mode of vibration. In many ways, these results are more
interesting than those from the previous set because they show a
transition from an undamped system to an unstable damped one. In this
example, the extent of the skew-symmetry could be adjusted by varying
the speed of rotation of the rotor since this parameter appears directly
in the off-diagonal terms that relate to the internal damping.
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82 *1 X2
0.0 2.00 i 1 -1.00
0.1 1.90 i 1 -1.12

0.3 1.65 i 1 -1.58

0.5 1.23 i 1 Infinity

0.7 0.32+ 1.00 i 1 1.58 i
0.9 0.57 + 0.79 i 1 1.12 i
1.0 0.70 + 0.70 i 1 i

Thus we arrive at the conclusion that as the speed of rotation increases,
the system becomes less and less stable until there comes a point when
the boundary of stability is crossed so that both the eigenvalues and
eigenvectors are complex and the system is unstable. In real structures,
this boundary of stability will be affected by all the sources of damping
which are present (only the effect of internal damping on the stiffness
matrix has been included here) but this analysis demonstrates in a
modal analysis context and, using a simple example, the well-known
phenomenon that ‘internal damping has a destabilising effect on a rotor
that is running at a super-critical speed’.

Before leaving this topic, it is worth noting that there is another
common phenomenon which comes into the same category in that it
gives rise to a non-symmetric stiffness matrix, and that is friction-
induced rub between rotating and a stationary components. When
forces created by rubs are included in the equations of motion, they will
frequently have the effect of contributing a non-symmetric component to
the displacement-dependent (stiffness) matrix. Such a feature will have
the same possible consequences as those we have seen above: in some
cases, depending on the specific numerical values of all the relevant
parameters, this effect can give rise to an unstable mode of vibration.
Although it seems instinctively to be unlikely, friction forces developed
by a rotor rubbing on the stator can cause instability, and this property
has been witnessed in countless situations, often to the distress of the
relevant components.

2.8.4 Dynamic Analysis of Rotating Flexible Disc-like
Structures

2.8.4.1 Classification and modal properties of flexible disc-like
structures

It is found that many of the most critical (i.e. vibration-prone)
components in rotating machines fall into a class of structure which is
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generally described as ‘quasi-axisymmetric’: components which are
‘disc-like’ (wheels, gears, discs, impellers,...). The various types of
structure which concern us here are:

(i) axisymmetric;
(li) cyclically-periodic, or
(lii) slightly asymmetric, or aperiodic (which means slightly imperfect

structures of the first and second types), referred to as ‘quasi-
periodic’.

We shall not describe the vibration properties of these structures in
detail here, but simply note that the essential modal properties are as
follows:

• axisymmetric structures (plain discs, wheels, etc.) have modes
whose shapes are described in the circumferential direction, 0 , by
variations of the form:

<|>(0) = cos(n0 + an)

and are therefore known as ‘n-nodal diameter’ or nND modes;

• cyclically-periodic structures (such as bladed discs, impellers,
gear wheels) have modes whose shapes are described in the
circumferential direction, 0 , by expressions of the form:

<l>(0) = Un cos(n0 + an )+ AN_n cos((w-n)0 + a N_n )
+ AN+n cos((W + n)0 + aN+n)+ . ..}

where N is the number of blades, vanes, teeth etc. These are also
referred to as ‘n-nodal diameter modes’ although this description
is less precise in this case than for the preceding one because the
mode shape clearly includes more components than just the cos
n0 one. It is possible to find modes in which the largest component
is cos nd , and such a mode is well described as one with nND,
but, equally, modes exist in which the most significant component
in the mode shape is the second one ((IV-n)Q) or an even higher
one, and in these cases, the nND description is not the most
appropriate. (It should be noted that if such mode shapes are
defined by determining the amplitude ratios only at the N
discrete points around the rim which carry the blades/vanes/etc.,
then the discrete Fourier description which results will be
incapable of discriminating above the first term in this series —
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(N - n) would be indistinguishable from n — hence the
classification simply as ‘n-nodal diameter’ modes.);

• quasi-periodic structures, in which the loss of axisymmetry is
small, usually due to manufacturing tolerances, have mode
shapes which are described (in the circumferential direction) by:

<|>(0) = cos(r0 + ar )

where r — 1, 2, 3, ..., but is generally — although not always —
dominated by n, N -n , N + n , etc. When these modes are so
dominated by a single, or few, terms of this type, the nodal
diameter label is still used, although it is rather less precise than
for the other cases. However, it should be noted that there are
situations where small deviations from true axisymmetry, or
cyclic symmetry, can lead to mode shapes which contain many
significant diametral components and which cannot then be
realistically described at all by the ‘nND’ label.

A second feature of the modes of these disc-like structures concerns
their natural frequencies. In the case of type (i) and (ii) structures, most
of the modes exist in pairs of ‘double’ modes: two modes with identical
natural frequencies and mode shapes which differ only in the angular
orientation of the nodal lines, i.e. in are. As is the case generally, when
there are two or more modes with identical natural frequencies, any
combination of the individual two mode shapes is also a mode shape.
This can lead to some unexpected features in the case of these
axisymmetric structures where, for example, a valid mode shape can be
produced by a combination of l.Oxcos(n0 + an) plus ixsin(n0 + an) ,
the result of which is a cos nd mode shape rotating around the structure
in a travelling wave motion. Type (iii) structures also possess these
double modes but in this case the natural frequencies of each pair of
modes are slightly separated, or ‘split’, resulting in two distinct modes
(i.e. not repeated roots, in the mathematical sense) but which may be
very difficult to distinguish from each other in observed response
characteristics because of the inevitable ‘coupling’ effects of the
structure’s damping properties.

One consequence of these features is that the structures which
display such modal properties can be much more difficult to test than
are structures with single modes. As a result, measured modal
properties of axisymmetric, or quasi-axisymmetric, structures are often
in error, sometimes through ignorance on the part of the analyst and
sometimes because of the inherent difficulties in making the
measurements.
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2.8.4.2 Response properties of stationary disc-like structures
As intimated above, the response properties of the family of structures
included in this ‘disc’ category can be very complicated as a direct result
of the special ‘symmetry’ they possess, even when they are stationary.
(Note that this ‘symmetry’ is unconnected with the symmetry of the
system matrices which has been discussed at length earlier in this
section.) While it is not appropriate to provide a full exposition of these
vibration properties here, it is useful to illustrate the basic phenomena
using a simple example. The simplest illustration of the effects of
interest can be provided by considering a plain uniform disc which is
excited at a single point on its rim with an harmonic force tuned to the
exact natural frequency of the fundamental mode with two nodal
diameters. The resulting response can be summarised by the sketch in
Fig. 2.26(a) which shows the two nodal diameter Unes symmetrically
disposed about the excitation point. If we were to relocate the point of
application of the excitation force around the disc rim by 45 degrees, we
might then expect to obtain no resonant response, because excitation at
a nodal point has that particular result. However, what we find in
practice is that the nodal Unes ‘move’ around to follow the excitation
point so that the response pattern obtained in the second case is as
shown in Fig. 2.26(b). This result, which is both intuitive and correct,
can only be explained if there is more than one mode with the two nodal
diameter shape: indeed — two, each with the same natural frequency
but with mode shapes that are orthogonal to each other — one as sin 20
and the other as cos 20 — and this is exactly what happens.

Fig. 2.26 Forced response of disc in 2ND resonance

Each double mode of a ‘disc’ structure can be described as two
modes, with identical or very close (depending upon the exact degree of
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symmetry which obtains) natural frequencies and mode shapes which
are essentially of the form:

li(e)= sin nQ and 2 (®) = cos n&

(in which we have dispensed with the arbitrary offset, an , for
simplicity). We shall now suppose that there is a point harmonic
excitation F0cos(a)t) applied at circumferential location 0 = 0j, and
note that this excitation condition can also be described more completely
as:

n=0

(2.125a)

It can be seen that such an excitation can also be described as:

/(0,0= — - ya;(cosn.0) + b;(sin7i0) -cos(cot)
( " J nv ' [n=0 J (2.125b)

aj = cos nQj ; b j = sin nQ j

and that the first term will excite the first of the pair of nND modes
while the second term will excite the second one, so that the response
will be of the form:

x(0,*)={a j (cosn0)+ Bj (sinn0)}cos(wi)

where Aj , Bj depend on the proximity of the excitation frequency, <0,
to the natural frequency of each mode, and the damping, but which will
be proportional to a j , bj when the two modes have identical natural
frequencies, in which case:

x(Q,t)= {c(cosn.(0-0j))}cos(<Bi)
This brief analysis serves to explain the above example of the 2ND
modes on the simple disc by showing that in the case of a perfectly
tuned (i.e. axisymmetric) disc the nodal lines will align themselves to be
symmetric with respect to the excitation, no matter where that is
applied.

Implicit in the above analysis is the fact that a mode with a cos nQ
mode shape will only be excited by an excitation force pattern which has
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a corresponding spatial distribution in it: i.e. the excitation force must
contain a component of Fn cosn.0 in it. Clearly, a single point excitation
force can be seen to contain components of all orders, from n = 0 to
infinity. From this result there follows the property that response in
certain modes can be suppressed by arranging for an excitation pattern
that eliminates certain orders from its circumferential decomposition.
Thus, if we apply two single-point excitation forces which are spaced 90
degrees apart around the disc rim, then we shall find that this
excitation has a zero component of 20 excitation and, as a result, modes
with 2ND will not be excited.

The above comments relate primarily to the reference case where
the structure is tuned, or perfectly axi- or cyclically symmetric. This is
not always the case, and it is necessary to extend the foregoing analysis
to the more general case where the symmetry is imperfect, in which
case the two modes of each pair (or double mode) have slightly different
natural frequencies. In this condition, the two modes will resonate at
different frequencies and, strictly, the nodal lines will be fixed in the
disc and will not move around to follow the excitation. Instead, two
resonances will be observed, one at the first natural frequency with
nodal lines in their fixed orientation, independent of the location of the
excitation, and a second resonance at the second natural frequency with
its nodal lines likewise fixed in the disc. The one caveat to this relatively
straightforward description concerns the transition from the former,
tuned case, to the latter, mistuned situation. How much natural
frequency separation or ‘split’ is necessary before we can observe the
above two-resonance phenomenon? The answer depends upon the level
of damping which prevails in the structure because if the frequency
separation or split between the two modes is very small, and the
damping is moderate, then the two resonances will not be individually
discernable and the structure will still appear to be tuned. As a rough
guide, we can expect that if the natural frequency split of the pair of
modes (as a percentage of the mean) is greater than the prevailing
modal damping (as a percentage of critical) then we should be able to
see the two modes individually but, if not, then the structure will
effectively be tuned.

2.8.4.3 Excitation and response of rotating disc-like structures
We shall now extend the above discussion of excitation forces applied to
the disc-like structures of interest in many rotating machines to the
case where these structures are rotating. We shall start by considering
again a single point harmonic force, Fo cos(mt), which is applied at a
fixed point in space, 0g = 0 and which can be defined by:
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( p \C° i

f(9g,t) = — Vcos(n0s)cos(rof)
I TT

(2.126a)
n=0

We next consider the effect of this force pattern as ‘seen’ in the rotating
axes frame by setting 0^ = 9g + Qi (where Q is the speed of rotation),
so that we obtain:

'cos(co+nQ)tcos(n07;)+sin(a>+nQ)isin(n0jij)
f^R,^ (2.126b)

'n=1^+cos((o-nQ)tcos(n0jt;)-sin((a-nQ)tsin(n02j)>

This expression shows that the single-harmonic fixed excitation,
Fq el(at , will generate a series of excitations applied to the rotating
component with the particular feature that all modes (in the rotating
disc) which have a cos(?i0^) or sin(n0^) form (i.e. modes with n nodal
diameters) will be excited at two frequencies, «4 2 =o>±«'Q • Thus, a
single harmonic excitation fixed in space will generate vibrations in the
rotating components at a large number of different frequencies, two for
every n, although the strength of each of the different response
components will vary according to the proximity of its frequency to a
natural frequency of one of the corresponding modes of the disc. This
result means that although it is possible to understand and to explain
the reason for these complicated excitation/response characteristics, it
will nevertheless be very difficult to derive FRF data in the usual
format if excitation is to be applied and measured in the stationary axes
set (for example) and the response is to be measured in the rotating
axes set.

A special case of widespread interest can be noted here: when the
excitation force is a static force (i.e. when co = 0), there will still be an
effective dynamic excitation experienced by the rotating disc and this
will be experienced at a frequency of nQ for a mode with nND.

It can now be noted that the previously-reported example of this
effect with the rigid rotor (in equation (2.120)) constitutes a special case
of this more general analysis. Such a rotor only has the possibility of
vibrating in modes for which n = 0 (axial and torsional motion) or n = 1
(lateral motion) and in the example quoted only the second of these two
groups was active, hence the two response frequencies of co±Q, as
described in the earlier sections.
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2.9 COMPLEX MODES
2.9.1 Real and Complex Modes, Stationary and Travelling

Waves
Earlier in this chapter we have encountered not only complex
eigenvalues — whose real and imaginary parts can be interpreted as
representing both decay and oscillatory components in the natural
frequencies — but also complex eigenvectors. The significance of these
complex eigenvectors is that the mode shapes are complex and we need
to understand what this means in practice.

In effect, a complex mode is one in which each part of the structure
has not only its own amplitude of vibration but also its own phase. As a
result, each part of a structure which is vibrating in a complex mode
will reach its own maximum deflection at a different instant in the
vibration cycle to that of its neighbours which all have different phases.
A real mode is one in which the phase angles are all identically 0° or
1.80° and which therefore has the usual property that all parts of the
structure do reach their own maxima all at the same instant in the
vibration cycle. Equally, in a real mode, all parts of the structure pass
through their zero deflection position at the same instant so that there
are two moments in each vibration cycle when the structure is
completely undeformed. This is not a property of a complex mode
because, by the same token that results in the maxima being attained at
different times, the zero positions are reached at different times also.
Thus, while the real mode has the appearance of a standing wave, the
complex mode is better described as exhibiting travelling waves. An
attempt to illustrate these two types of mode pictorially is offered in
Fig. 2.27 where a succession of frames are overplotted. The standing
and travelling wave effects can be seen here although the best
demonstrations are to be obtained by using the animation facilities on a
computer.

Another method of displaying modal complexity is by plotting the
elements of the eigenvector on an Argand diagram, such as the ones
shown in Fig. 2.28, which include examples of both highly-complex (a)
and almost-real (b) mode shapes. (Note that the almost-real mode shape
does not necessarily have vector elements with near-0° or near-180°:
what matters are the relative phases between the different elements.)

2.9.2 Measurement of Modal Complexity
In the next section we shall be considering the provenance of modal
complexity and, in the course of that discussion, the question of the
degree of complexity will arise. It is thus necessary to have a means of
measuring modal complexity and there are one or two parameters
which have been proposed for this task, although none of these has yet
been established as the universally-accepted indicator. Two will be
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Complex mode (travelling wave)

Fig. 2.27 Real and complex mode shapes displays

Fig. 2.28 Complex mode shapes plotted on Argand diagrams.
(a) Almost-real mode; (b) Complex mode; (c) Measure of
complexity
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presented here: a simple and crude one (MCF1) which simply measures
the phase differences between all pairs of mode shape vector elements,
regardless of the magnitude of those elements, and a more subtle (and
realistic) one (MCF2) which reflects the magnitude as well as the phase
of each of the elements.

The first of these indicators, MCF1, is computed simply by summing
all the phase differences between every combination of two eigenvector
elements. Thus:

N N
MCF1 =£

j=lk=l;*j

The second measure can be explained with reference to the complex¬
plane plots shown in Fig. 2.28. If a polygon is drawn around the
extremities of the individual vectors, as shown in Fig. 2.28(c), but
without permitting re-entrant parts, then it encloses an area which can
be compared with the area of the circle which is based on the length of
the largest vector element. The resulting ratio of these two areas is used
as an indication of the complexity of the mode in question, and is
defined as MCF2.

Following the discussion concerning the origins of complex modes, a
series of case studies will be summarised in Section 2.9.4, illustrating
the essential features of complex modes and reinforcing the
explanations of their origins in conventional structures.

2, 9.3 Origins of Complex Modes
Complex modes occur in practice for a variety of reasons and it is
important to know what conditions are necessary for them to exist so
that it can be established whether ones obtained in a modal test are
genuine or the result of poor measurement or analysis (a situation
which can happen rather too easily).

The types of modes which are referred to as ‘operating deflection
shapes’ (and which are not normal modes, in any form) will frequently
exhibit the relative phases differences between responses of adjacent
parts of the structure which indicate a complex mode. This is to be
expected and is quite normal behaviour.

We have seen in the preceding section that complex normal modes
can exist in even the simplest of structures which contain rotating
components that are prone to gyroscopic forces. Thus, for this special
class of structure, complex modes are the norm and are to be expected
in most cases.

However, normal modes of conventional (i.e. non-rotating) linear
structures can be complex only if the damping is distributed in a non-
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proportional way. This situation can arise quite readily in practice
because while the internal (hysteresis) damping of most structural
elements is distributed in a way which is essentially proportional to the
stiffness distribution, the majority of the damping in real structures is
generally found to be concentrated at the joints between components of
a structural assembly and this does not usually result in a proportional
distribution. Thus, in most structures, this basic ingredient of non¬
proportionality for complex modes is likely to exist. However, it is found
that while non-proportionality is a necessary condition for complex
modes to exist, it is not sufficient, at least not if the degree of complexity
is to be other than trivial. Another ingredient is found to be necessary to
generate significant complexity in a structure’s modes and that is the
requirement that two or more of its modes are ‘close’. ‘Close’ modes are
those whose natural frequencies are separated by an amount which is
less than the prevailing damping in either or both modes. (In simple
terms, two modes with natural frequencies of 105 Hz and 110 Hz are
‘close’ if the modal dampings are of the order of 5 per cent or more, but
are not ‘close’ if their damping factors are typically 1 per cent or less.)
Some specific case studies will be shown at the end of this section.

One further example in which complex modes may be encountered is
worth mentioning: that concerns structures with repeated roots, or two
or more modes with identical natural frequencies. As previously
mentioned, such circumstances are not rare in practical structures and
so the special features which they can exhibit are certainly worth
including. In the case of a simple undamped structure which has a
double symmetry, such as the circular bar discussed in Section 2.4.3,
there are two modes with identical natural frequencies and thus mode
shapes with a degree of arbitrariness in their form. In fact, possible
mode shapes for this structure include any linear combination of the
two reference mode shapes that would be computed from a theoretical
modal analysis, or measured in a modal test, which would normally be
bending in the vertical plane and bending in the horizontal plane. Any
combination of these two mode shapes includes: bending in any plane,
when the two modes’ contributions are in phase, or an orbiting motion,
when the components of the two modes are out of phase by 90°. This
latter case is clearly a complex mode, and can be exhibited by such a
symmetrical structure, even in the absence of damping and the
gyroscopic effects of rotation.

2.9.4 Case Studies of Complex Modes
In order to illustrate the effects of close natural frequencies and
damping levels on modal complexity, a series of case studies based on a
3DOF system are shown below. The system is a variant of that already
used in Section 2.6, and simply involves a systematic changing of the
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values of the three individual masses, , m2 and m3 , in such a way
that the two of the three natural frequencies get closer and closer,
eventually becoming identical. For each case in this series, the modal
complexity is recorded, as is the modal damping for each of the modes.

The results are presented in Fig. 2.29, which shows both these
parameters as a function of the separation between the natural
frequencies of modes 2 and 3, (<o3 -a>2). From this example, it is seen
how the level of complexity of the two close modes is directly related to
the proximity of their natural frequencies and the prevailing level of
damping in the two modes. At the extreme case, where the two modes
have identical natural frequencies, we find that one of them becomes
entirely real, but this is a peculiarity of the particular model used here,
and corresponds to one of the modes becoming undamped as a result of
the geometric symmetry of the system and the ineffectiveness of the
single damper to provide damping to that mode as a result.

Fig. 2.29 Modal complexity for system with close modes

2.10 CHARACTERISTICS AND PRESENTATION OF MDOF
FRF DATA

2.10.1 A Note About Natural Frequencies
Having now presented all the basic theory, it is appropriate to comment
on the various definitions which have been introduced for ‘natural’
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frequencies. The basic definition derives from the undamped system’s
eigenvalues which yield the frequencies at which free vibration of the
system can take place. These undamped system natural frequencies are
given by the square roots of the eigenvalues and are identified by the
symbol <or , and this occurs in expressions for both free vibration
response:

N
x(t) =

r=l
(2.127a)

and for forced vibration, the FRF:

N
a(®) = X

r=l CO2 - CO2
(2.127b)

For damped systems, the situation is more complicated and leads to
two alternative characteristic frequency parameters being defined —
both called ‘natural’ frequencies — one for free vibration (co 'r ) and the
other for forced vibration (<nr). The former constitutes the oscillatory
part of the free vibration characteristic which, being complex, contains
an exponential decay term as well. Thus we have:

N

r=l
(2.127c)

where co'r may or may not be identical to ar , depending on the type
and distribution of the damping (see Table 2.3). The second definition
comes from the general form of the FRF expression which, combining all
the previous cases, may be written in the form:

N
= 52

r=l

Cr
co2 -co2 +iDr

(2.127d)

Here, Cr may be real or complex and Dr will be real, both may be
constant or frequency-dependent and cor will, in general, be different to
both and co'r , except in some special cases. Table 2.3 summarises all
the different cases which have been included. In these cases, the precise
relationship between the eigenvalues (the roots of the characteristic
equation) and the natural frequencies is also more complex. In the
cases of hysteretic damping, each complex eigenvalue yields an
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oscillatory frequency component in the square root of the Real Part and
the decay part (the loss factor) from the Imaginary Part. In the case of
viscous damping, each complex eigenvalue yields an oscillatory
frequency component in its Imaginary Part and the damping or decay
rate in the Real Part.

Table 2.3 FRF Formulae and Natural Frequencies

Case
Eqn.
for

FRF
C D

Natural Frequency

Free cn'r Forced
“r

UNDAMPED 2.41 REAL, CONST. 0 “r “r

PROP. HYST. 2.56 REAL, CONST. REAL, CONST. “r

PROP. VISC. 2.50 REAL, CONST. REAL (co) cojl-^ ®r

GEN. HYST. 2.66 COMPLEX, CONST. REAL, CONST. ®r ®r

GEN. VISC. 2.100 COMPLEX (co) REAL (co) cojl-^ “r

2.10.2 Mobility and Impedance FRF Parameters
In every case, the most important feature of the general expression in
(2.127d) is its close relationship with the FRF expression for the much
simpler SDOF system, studied in detail in Section 2.2. We shall now
consider the properties of this type of function and then examine the
various means used to display the information it contains. It should be
emphasised that a thorough understanding of the form of the different
plots of FRF data is invaluable to an understanding of the modal
analysis processes which are described in Chapter 4.

First, we consider the various forms of FRF. As before, there are
three main alternatives, using displacement, velocity or acceleration
response to produce respectively receptance, mobility or inertance (or
accelerance). These three forms are interrelated in just the same way as
described earlier, so that we may write:

[y(co)] = i co[a(co)]
[A(co)]= ico[y(co)] (2.128)

= -co2[a(co)]

However, the FRF data of multi-degree-of-freedom systems have a more
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complex form than their SDOF counterparts and this may be seen from
the strict definition of the general receptance, a jk , which is:

a jk (co) Ft =0,l=l,N;l*k (2.129)

and it is the footnote qualification which is particularly important.
We saw in Sections 2.2 and 2.3 that there exist a further three

formats for FRF data, these being the inverses of the standard
receptance, mobility and inertance and generally known as ‘dynamic
stiffness’, ‘mechanical impedance’ and ‘apparent mass’, respectively.
Whereas with a SDOF system there is no difficulty in using either one
or its inverse, the same cannot be said in the case of MDOF systems. It
is true to say that for MDOF systems we can define a complete set of
dynamic stiffness or impedance data (and indeed such data are used in
some types of analysis), but it is not a simple matter to derive these
inverse properties from the standard mobility type as the following
explanation demonstrates.

In general, we can determine the response of a structure to an
excitation using the equation:

{%}= {V} = [Y(co)]{F} (2.130a)

Equally, we can write the inverse equation using impedances instead of
mobilities, as:

{^}= [^(co)Xv} (2.130b)

The problem arises because the general element in the mobility matrix,
Yik (®) , is not simply related to its counterpart in the impedance matrix,
Zik (w) , as was the case for a SDOF system. Stated simply:

YjkW =YkjW*-±— (2.131)
Z jk (®)

and the reason for this unfortunate fact derives from the respective
definitions, which are:

( Vk ( FjYkj(®) = -r and Zjk(a)= —J~ ; l=l,N;l*k (2.132)
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It is clear from these expressions that while it is entirely feasible to
measure the mobility type of FRF by applying just a single excitation
force and ensuring that no others are generated, it is far less
straightforward to measure an impedance property which demands that
all DOFs except one are grounded. Such a condition is almost impossible
to achieve in a practical situation.

Thus, we find that the only types of FRF which we can expect to
measure directly are those of the mobility or receptance type. Further, it
is necessary to guard against the temptation to derive impedance-type
data by measuring mobility functions and then computing their
reciprocals: these are not the same as the elements in the matrix
inverse. We can also see from this discussion that if one changes the
number of coordinates considered in a particular case (in practice we
will probably only measure at a small fraction of the total number of
degrees of freedom of a practical structure), then the mobility functions
involved remain exactly the same but the impedances will vary.

Lastly, we should just note some definitions used to distinguish the
various types of FRF.

A point mobility (or receptance, etc.) is one where the response
DOF and the excitation coordinate are identical.

A transfer mobility is one where the response and excitation
DOFs are different.

Sometimes, these are further subdivided into direct and cross
mobilities, which describe whether the types of the DOFs for response
and excitation are identical — for example, whether they are both x-
direction translations (direct), or one is x-direction and the other is y-
direction (cross), etc.

2.10.3 Display for Undamped System FRF Data
2.10.3.1 Construction of FRF plots for 2DOF system
As in the earlier section, it is helpful to examine the form which FRF
data take when presented in various graphical formats. This knowledge
can be invaluable in assessing the validity of and interpreting measured
data.

We shall start with the simplest case of undamped systems, for
which the receptance expression is given in equation (2.41). Using the
type of log-log plot described in Section 2.3, we can plot the individual
terms in the FRF series as separate curves, as shown in Fig. 2.30 (which
is actually a plot of mobility). In this way, we can envisage the form
which the total FRF curve will take as it is simply the summation of all
the individual terms, or curves. However, the exact shape of the curve is
not quite so simple to deduce as first appears because part of the
information (the phase) is not shown. In fact, in some sections of each
curve, the receptance is actually positive in sign and in others, it is
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Fig. 2.30 Typical mobility FRF plot for MDOF system (showing individual
modal contributions)

negative but there is no indication of this on the logarithmic plot which
only shows the modulus. However, when the addition of the various
components is made to determine the complete receptance expression,
the signs of the various terms are obviously of considerable importance.
We shall examine some of the important features using a simple
example with just two modes — in fact, based on the system used in
Section 2.3 — and we shall develop the FRF plots for two parameters,
the point (receptance or mobility) FRF, an , and the transfer FRF, a21.
Fig. 2.30 is a mobility plot showing both the individual terms in the
series and applies to both the above-mentioned FRFs. If we look at the
expressions for the receptances we have:

a11(ro) = 0.5/(a)2 -o>2)+0.5/(o)2 -®2)
and

a2i(“) = 0.5/koi - cd2 )-0.5/ of - <d2 (2.133)

from which it can be seen that the only difference between the point and
the transfer receptances is in the sign of the modal constant (the
numerator) of the second mode and as the plots only show the modulus,
they are apparently insensitive to this difference. However, if we
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consider what happens when the two terms are added to produce the
actual FRF for the MDOF system, we find the following characteristics.

Consider first the point mobility, Fig. 2.31(a). We see from (2.133)
that at frequencies below the first natural frequency, both terms have
the same sign and are thus additive, making the total FRF curve higher
than either component, but we must note that the plot uses a
logarithmic scale so that the contribution of the second mode at these
low frequencies is relatively insignificant. Hence, the total FRF curve is
only shghtly above that for the first term. A similar argument and
result apply at the high frequency end, above the second natural
frequency, where the total plot is just above that for the second term
alone. However, in the region between the two resonances, we have a
situation where the two components have opposite signs to each other
so that they are subtractive, rather than additive, and indeed at the
point where they cross, their sum is zero since there they are of equal
magnitude but opposite sign. On a logarithmic plot of this type, this
produces the antiresonance characteristic which reflects that of the
resonance. In the immediate vicinity of either resonance, the
contribution of the term whose natural frequency is nearby is so much
greater than the other one that the total is, in effect, the same as that
one term. Physically, the response of the MDOF system just at one of its
natural frequencies is dominated by that mode and the other modes
have very little influence. (Remember that at this stage we are still
concerned with undamped, or effectively undamped, systems.)

Now consider the transfer FRF plot, Fig. 2.31(b). We can apply
similar reasoning as we progress along the frequency range with the
sole difference that the signs of the two terms in this case are opposite.
Thus, at very low frequencies and at very high frequencies, the total
FRF curve lies just below that of the nearest individual component
while in the region between the resonances, the two components now
have the same sign and so we do not encounter the cancelling-out
feature which gave rise to the antiresonance in the point mobility. In
fact, at the frequency where the two terms intersect, the total curve has
a magnitude of exactly twice that at the intersection.

2.10.3.2 FRF modulus plots for MDOF systems
The principles illustrated here may be extended to any number of
degrees of freedom and there is a fundamental rule which has great
value and this is that if two consecutive modes have the same sign for
the modal constants, then there will be an antiresonance at some
frequency between the natural frequencies of those two modes. If they
have opposite signs, there will not be an antiresonance, but just a
minimum. (The most important feature of the antiresonance is perhaps
the fact that there is a phase’ change associated with it, as well as a
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Fig. 2.31 Mobility FRF plot for undamped 2D0F system.
(a) Point FRF; (b) Transfer FRF
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very low magnitude.)
It is also very interesting to determine what controls whether a

particular FRF will have positive or negative modal constants, and thus
whether it will exhibit antiresonances or not. Considerable insight may
be gained by considering the origin of the modal constant: it is the
product of two eigenvector elements, one at the response point and the
other at the excitation point. Clearly, if we are considering a point
mobility, then the modal constant for every mode must be positive, it
being the square of a number. This means that for a point FRF, there
must be an antiresonance following every resonance, without exception.

The situation for transfer FRFs is less categorical because clearly
the modal constant will sometimes be positive and sometimes negative,
depending upon whether the excitation and response move in phase
with each other, or not. Thus, we expect transfer FRF measurements to
show a mixture of antiresonances and minima. However, this mixture
can be anticipated to some extent because it can be shown that, in
general, the further apart are the two points in question, the more likely
are the two eigenvector elements to alternate in sign as one progresses
through the modes. Thus, we might expect a transfer FRF between two
positions widely separated on the structure to exhibit fewer
antiresonances than one for two points relatively close together. A clear
example of this is given in Fig. 2.32 for a 6DOF system, showing a
complete set of FRFs for excitation at one extremity.

Finally, it should be noted that if either the excitation or the
response coordinates happen to coincide with a node for one of the
modes (i.e. (tj)^)/^,.) = 0), then that mode will not appear as a
resonance on the FRF plot. This arises since, for such a case, we shall
have rAjk =0 and so the only response which will be encountered at or
r ear co = cor will be due to the off-resonant contribution of all the other
modes.

2.10.3.3 FRF phase plots
Before we leave this topic, it is instructive to consider also the phase of
the FRF data. All the plots referred to in this section have displayed
only the modulus part of the response function (and this, indeed, is
usually the most important part) but there is some value in examining
the phase, also. If the phase plots for the six FRFs shown in Fig. 2.32
are presented as well, we can see certain features which, if not expected,
are of some interest. Consider first the point FRF, an , whose phase is
shown in Fig. 2.32(b): we see that this function remains within the
range -180° < 0a < 0°, switching from 0° to 180° on passing through
each resonance, and then returning to 0° at each antiresonance.
However, the plots for the other, . transfer, FRFs are the more
interesting because we see essentially the same properties (on passing
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Fig. 2.32 Point and transfer mobility FRF data for 6DOF system
(a) Modulus plots; (b) Phase plots
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through resonances and antiresonances) but as the incidence of
antiresonances decreases as the separation between excitation and
response points grows, we find a progressive increase in the phase angle
of the transfer FRFs as the frequency gets higher. In the last case, for
agi — Fig. 2.32(b) — the phase angle above the last resonance is 1080°.
However, the phase is often plotted within the restricted range of just
360°, whether that be between -180° and +180° or 0° and 360°, and so
this unwrapping feature is often not visible, although it is there and has
some practical significance.

2.10.3.4 Simple mode shape analysis from undamped FRF plots
There is a simple technique for deducing the essential form of each of
the mode shapes of an MDOF system by visual inspection of an
appropriate set of FRFs, such as those given in Fig. 2.32 for the 6DOF
system shown there. The technique requires the labelling of the sign of
each modal constant for each resonance on each curve, as shown in
Fig. 2.32 for the first two resonances (the sequence can be continued by
the reader to encompass all six modes on the plots). Then, the essential
shape of each mode can be identified by noting the signs of the modal
constants for one mode as follows: for mode 1, this sequence is:

{+ + + + + +}T,

while for mode 2 it is

{++-—

This means that for mode 1, all the six masses will be moving in phase
with each other, while for mode 2, the first and second masses will move
in one direction while masses 3, 4, 5 and 6 will be moving in the
opposite direction.

The simple explanation of this technique is based on the fact that
the sequence of modal constants which make up the ‘column’ consist
of the following quantities:

{(^lr X Gtar )> ^Ir )> (4*5r ^Ir )> (^Gr ^Ir )}

and these are simply a constant (<j>lr ) multiplied by the mode shape
vector:

felr )> (<t>2r )> (<l>3r )> (<t>4r )> (4>5r )> («l>6r )}T (llr )
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from which it is seen that the essential form of the mode shape, in terms
of elements moving in- or out-of- phase, can be readily deduced.

2.10.4 Display of FRF Data for Damped Systems
2.10.4.1 Bode plots
If we turn our attention now to damped systems, we find that the form
of the FRF plot of the type just discussed is rather similar to that for the
undamped case. The resonances and antiresonances are blunted by the
inclusion of damping, and the phase angles (not shown) are no longer
exactly 0° or 180°, but the general appearance of the plot is a natural
extension of that for the system without damping. Fig. 2.33 shows a plot
for the same mobility parameter as appears in Fig. 2.31(a) but here for a
system with damping added. Most mobility plots have this general form
as long as the modes are relatively well-separated. This condition is
satisfied unless the separation between adjacent natural frequencies
(expressed as a percentage of their mean) is of the same order as, or less
than, the modal damping factors, in which case it becomes difficult to
distinguish the individual modes.

2.10.4.2 Nyquist diagrams
As for the SDOF case, it is interesting to examine the nature of the
other types of plot for FRF data, and the most profitable alternative
version is again the Nyquist or Argand diagram plot. We saw earlier
how one of the standard FRF parameters of a SDOF system produced
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an approximate circle when plotted in the Nyquist format (and that by
choosing the appropriate FRF parameter, an exact circle can be formed
for either type of damping). This also applies to the MDOF system in
that each of its frequency responses is composed of a number of SDOF
components.

Fig. 2.34(a) shows the result of plotting the point receptance, an ,
for the 2DOF system described above. Proportional hysteretic damping
has been added with damping loss factors of 0.02 and 0.04 for the first
and second modes, respectively. It should be noted that it is not always
as easy to visualise the total curve from the individual components as is
the case here (with well-separated modes) although it is generally found
that the basic characteristics of each (mainly the diameter and the
frequency at which the local maximum amplitude is reached) are
carried through into the complete expression.

A corresponding plot for the transfer receptance, a2j , is presented
in Fig. 2.34(b) where it may be seen that the opposing signs of the modal
constants (remember that these are still real quantities because for a
proportionally-damped system the eigenvectors are identical to those for
the undamped version) of the two modes have caused one of the modal
circles to be in the upper half of the complex plane.

The examples given in Figs. 2.34 were for a proportionally-damped
system. In the next two figures, 2.35(a) and (b), we show corresponding
data for an example of non-proportional damping. In this case a relative
phase has been introduced between the first and second elements of the
eigenvectors: of 30° in mode 1 (previously it was 0°) and of 150° in mode
2 (where previously it was 180°). Now we find that the individual modal
circles are no longer ‘upright’ but are rotated by an amount dictated by
the complexity of the modal constants. The general shape of the
resulting Nyquist plot is similar to that for the proportionally-damped
system although the resonance points are no longer at the ‘bottom’ (or
‘top’) of the corresponding circles. The properties of an isolated modal
circle are described in Chapter 4.

2.10.4.3 Real and imaginary plots
Next, we present in Fig. 2.36 plots of the Real and Imaginary Parts of
the FRF vs. Frequency to illustrate the general form of this type of
display.

The plots shown in Figs. 2.33 to 2.36 all refer to systems with
structural or hysteretic damping. A similar set of results would be
obtained for the case of viscous damping with the difference that the
exact modal circles will be produced for mobility FRF data, rather than
receptances, as has been the case here.
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(a) (b)

Fig. 2.34 Nyquist FRF plot for proportionally-damped system,
(a) Point receptance; (b) Transfer receptance

Fig. 2.35 Nyquist FRF plot for non-proportionally-damped system.
(a) Point receptance; (b) Transfer receptance
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Fig. 2.36 Real and imaginary plots of accelerance FRF for damped 2D0F
system
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2.10.4.4 Three-dimensional plots
Lastly, we show in Fig. 2.37, a three-dimensional plot of an MDOF
system FRF, using the same basic format as shown earlier for an SDOF
system. Once again, this form of presentation has more curiosity value
than practical, it being very difficult to interpret.

Fig. 2.37 Three-dimensional plot of FRF for MDOF system

2.10.5 Summary
The purpose of this section has been to predict the form which will be
taken by plots of FRF data using the different display formats which are
in current use. Although we may have a working familiarity with
measured FRF plots, the results shown above have been derived
entirely from consideration of the theoretical basis of structural
vibration theory and the exercise in so doing proves to be invaluable
when trying to understand and interpret actual measured data.

2.11 NON-SINUSOIDAL VIBRATION AND FRF
PROPERTIES

With receptance and other FRF data we have a means of computing the
response of a MDOF system to an excitation which consists of a set of
harmonic forces of different amplitudes and phases but all of the same
frequency. In the general case, we can simply write
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= [afa)]^}^ (2.134)

We shall now turn our attention to a range of other excitation/response
situations which exist in practice and which can be analysed using the
same frequency response functions. Also, we shall show the
mathematical basis of how the FRF properties can be obtained from
measurements made during non-sinusoidal vibration tests.

2.11.1 Periodic Vibration
2.11.1.1 Periodic signals as Fourier series
The first of these cases is that of periodic vibration, in which the
excitation (and thus the response) is not simply sinusoidal although it
does retain the property of periodicity. Such a case is illustrated in the
sketch of Fig. 2.38(a) which shows a sawtooth type of excitation and two
of the responses it produces from a system. Clearly, in this case there is
no longer a simple relationship between the input and the outputs, such
as exists for harmonic vibration where we simply need to define the
amplitude and phase of each parameter. As a result, any function
relating input and output in this case will necessarily be quite
complicated.

Fig. 2.38 Periodic signals and their sinusoidal (Fourier) components

It transpires that the easiest way of computing the responses in
such a case as this is by means of the Fourier Series. The basic principle
of Fourier analysis is that any periodic function (such as /o(0 , x^t) or
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x2(0 in Fig- 2.38(a)) can be represented by a series of sinusoids of
suitable frequencies, amplitudes and phases, as illustrated in Fig.
2.38(b), based on the fundamental period, T. (A more detailed discussion
of Fourier Series is given in Appendix 5.) So

/p(0 = ^,0^6^ ; con = - (2.135)

Once a frequency decomposition of the forcing function has been
obtained, we may use the corresponding FRF data, computed at the
specific frequencies present in the forcing spectrum, in order to compute
the corresponding frequency components of the responses of interest:

00 ?
; con=^ (2.136)

n=l 1

What must be noted here is that although the response contains exactly
the same frequencies in its spectrum as does the forcing, the relative
magnitudes of the various components are different in the two cases
because the FRF data vary considerably with frequency. Thus, we
obtain response time histories which are periodic with the same period
as the excitation, T, but which have quite different shapes to it and,
incidentally, to each other (see Fig. 2.38).

2.11.1.2 To derive FRF from periodic vibration signals
It is possible to determine a system’s FRF properties from excitation
and response measurements when the vibration is periodic. To do this,
it is necessary to determine the Fourier Series components of both the
input force signal and of the relevant output response signal(s). Both of
these series will contain components at the same set of discrete
frequencies; these being integer multiples of 27r/T , where T is the
fundamental period.

Once these two series are available, the frequency response function
can be defined at the same set of frequency points by computing the
ratio of the response component to the input component. For both data
sets, there will be two parts to each component — magnitude and phase
(or sine and cosine).

2.11.2 Transient Vibration
We shall turn our attention next to the case of transient vibration
which, strictly speaking, cannot be treated by the same means as above
because the signals of excitation and response are not periodic.
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However, as discussed in the Appendix on Fourier analysis, it is
sometimes possible to extend the Fourier Series approach to a Fourier
Transform for the case of an infinitely long period. Here, it is generally
possible to treat both the transient input and response in this way and
to obtain an input/output equation in the frequency domain. It is also
possible to derive an alternative relationship working in the time
domain directly and we shall see that these two approaches arrive at
the same solution.

2.11.2.1 Analysis via Fourier Transform
For most transient cases, the input function f(t) will satisfy the
Dirichlet condition and so its Fourier Transform, F(o>), can be
computed from:

oo

F(®) = (1/2ti) dt (2.137)
—oo

Now, at any frequency o, the corresponding Fourier Transform of the
response, X (co) , can be determined from:

X(oo) = H(^F(a) (2.138)

where H(&) represents the appropriate version of the FRF for the
particular input and output parameters considered. We may then derive
an expression for the response itself, x(t) , from the Inverse Fourier
Transform of X(co)

oo

x(t)= (2.139)
—00

2.11.2.2 Response via time domain (superposition)
This alternative analysis is sometimes referred to as convolution, or
‘Duhamel’s Method’, and is based on the ability to compute the response
of a system to a simple (unit) impulse. Fig. 2.39(a) shows a typical unit
impulse excitation applied at time t = t' which has the property that
although the function has infinite magnitude and lasts for an
infinitesimal period of time, the area underneath it (or the integral
f(t)dt) is equal to unity. The response of a system at time t (after t' ) is

defined as the system’s unit Impulse Response Function (IRF) and has a
direct relationship to the Frequency Response Function (FRF) — one
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Fig. 2.39 Transient signals.
(a) Delta function; (b) Arbitrary time function

being in the time domain and the other in the frequency domain. The
IRF is written as:

If we now consider a more general transient excitation or input
function, as shown in Fig. 2.39(b), we see that it is possible to represent
this as the superposition of several impulses, each of magnitude
(/(f)dt') and occurring at different instants in time. The response of a
system (at time, t) to just one of these incremental impulses (at time t' )
can be written as:

8x(t) = h(t -t') f(t')dt' (2.140)

and the total response of the system will be given by superimposing or
integrating all the incremental responses as follows:

oo

x(t) = ^h(t -t') f(t') dt'

—QO

h(t -t’) = 0; t (2.141a)

This input/output relationship appears somewhat different to that
obtained via the Fourier Transform method, equation (2.139), but we
shall find that there is in fact a very close relationship between them.
This we can do by using the Fourier Transform approach to compute the
response of a system to a unit impulse. Thus, let f(t)= 8(0) and
determine its Fourier Transform, F(<b) . In this case, application of
equation (2.137) is relatively easy and yields:

F(a) = 1/2tt
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If we now insert this expression into the general response equation,
(2.139), and note that, hy definition, this must be identical to the
impulse response function, we obtain:

oo

x(i) = (1/2tt) dm s h(t) (2.141b)

—00
Thus we arrive at a most important result in finding the Impulse and
Frequency Response Functions to constitute a Fourier Transform pair.

Following from this derivation, we can also see that the IRF can also
be expressed as a modal series, just as is possible for the FRF. Thus, if
we write

where Hr(a) is the contribution for a single mode, we can likewise
write:

(2.142)

where, for a viscously-damped system, hr(t)= AreSrt .

2.11.2.3 To derive FRF from transient vibration signals
As before, we are able to prescribe a formula for obtaining a structure’s
FRF properties from measurements made during a transient vibration
test. What is required is the calculation of the Fourier Transforms of
both the excitation and the response signals. The ratio of these two
functions (both of frequency) can be computed in order to obtain an
expression for the corresponding frequency response function:

(2.143)

In practice, it is much more common to compute a Discrete Fourier
Transform (DFT) or Series and thus to perform the same set of
calculations as described in the previous section for periodic vibration.
Indeed, such an approach using a DFT assumes that the complete
transient event is quasi periodic. This is a realistic approach which can
be applied to many transient-type signals — as opposed to continuous
signals — provided that in the time period of the measurement both
excitation and response signals are effectively zero at the start and the
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end of the sample.
Alternatively, the spectrum analyser may be used to compute the

FRF in the same way as it would for random vibration (see below),
namely by taking the ratio of the spectra. This is only useful if a
succession of repeated transients are applied — nominally, the same as
each other — in which case any noise on individual measurements will
be averaged out.

2.11.3 Random Vibration
2.11.3.1 Random signals in time and frequency domains
We come now to the most complex type of vibration — where both
excitation and response are described by random processes. Although it
might be thought that this case could be treated in much the same way
as the previous one — by considering the random signals to be periodic
with infinite period — this is not possible because the inherent
properties of random signals cause them to violate the Dirichlet
condition. As a result, neither excitation nor response signals can be
subjected to a valid Fourier Transform calculation and another
approach must be found.

It will be necessary to introduce and to define two sets of parameters
which are used to describe random signals: one based in the time
domain — the Correlation Functions — and the other in the frequency
domain — the Spectral Densities. We shall attempt here to provide
some insight into these quantities without necessarily detailing all the
background theory.

Consider a typical random vibration parameter, f(t) , illustrated in
Fig. 2.40(a), which will be assumed to be ergodic*. We shall introduce
and define the Autocorrelation Function, R^-(t), as the ‘expected’ (or
average) value of the product (/(£)./(£ + t)) , computed along the time
axis. This will always be a real and even function of time, and is
written:

%(T) = E|/(t)/(t + T)] (2.144)

and will generally take the form illustrated in the sketch of Fig. 2.40(b).
This correlation function, unlike the original quantity f(t) , does satisfy
the requirements for Fourier transformation and thus we can obtain its
Fourier Transform by the usual equation. The resulting parameter we
shall call a Spectral Density, in this case the Auto- or Power Spectral
Density (PSD), S^(co) , which is defined as:

* ‘Ergodic’ is a type of random process which requires only a single
sample, albeit of considerable length, to portray all the statistical
properties required for its definition.
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oo

Sff (<o) = (l/27t) ^Rff(y)e~ieiX ch
—oo

(2.145)

The Auto-Spectral Density is a real and even function of frequency, and
does in fact provide a description of the frequency composition of the
original function, f(f) . It has units of (/2 / co) and would generally
appear as in the plot of Fig. 2.40(c).

Fig. 2.40 Random signals.
(a) Time history; (b) Autocorrelation function; (c) Power spectral
density

A similar concept can be applied to a pair of functions such as /(t)
and x(i) to produce cross correlation and cross spectral density
functions. The cross correlation function, Rxf(~) , is defined as:

RxfW = E{x(t).f(t + T)] (2.146)

and the cross spectral density (CSD) is defined as its Fourier Transform:

oo

Sxy (co) = (1/2tt) ^(T^dT (2.147)
—oo
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Cross correlation functions are real, but not always even, functions of
time, and cross spectral densities, unlike auto spectral densities, are
generally complex functions of frequency with the particular conjugate
property that:

Sv(<») = S;x(a)) (2.148)

Now that we have established the necessary parameters to describe
random processes in general, we are in a position to define the
input/output relationships for systems undergoing random vibration. In
deriving the final equations which permit the calculation of response
from known excitations, we shall not present a full analysis; rather, we
shall indicate the main path followed without detailing all the algebra.
In this way, we hope to demonstrate the basis of the analysis and the
origins of the final expressions, which are the only ones required in
normal modal testing practice.

The analysis is based on the general excitation/response relationship
in the time domain, quoted above in equation (2.141) and repeated here:

oo

x(t) = ^h(t-t') f(t')dt’ (2.149)

—oo

Using this property, it is possible to derive an expression for x(i) and
another for x(£ + t) and thus to calculate the response autocorrelation,
^xx(T):

(t) = £ [x(().x(i + r)] (2.150)

This equation can be manipulated to describe the response
autocorrelation in terms of the corresponding property of the excitation,

, but the result is a complicated and unusable triple integral.
However, this same equation can be transformed to the frequency
domain to emerge with the very simple form:

=|H(o>)|2Sz/(co) (2.151)

Although apparently very convenient, equation (2.151) does not provide
a complete description of the random vibration conditions. Further, it is
clear that it could not be used to determine the FRF from
measurements of excitation and response because it contains only the
modulus of , the phase information being omitted from this
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formula. A second equation is required and this may be obtained by a
similar analysis based on the cross correlation between the excitation
and the response, the frequency domain form of which is:

Sfx^)=

or, alternatively: (2.152)

Sxx((o) = H(a)Sxf(a)

So far, all the analysis in this section has been confined to the case of a
single excitation parameter, although it is clear that several responses
can be considered by repeated application of the equations (2.151) and
(2.152). In fact, the analysis can be extended to situations where several
excitations are applied simultaneously, whether or not these are
correlated with each other. This analysis involves not only the
autospectra of all the individual excitations, but also the cross spectra
which link one with the others. The general input/output equation for
this case is:

[S/x(®)]= [sz/(co)][W)] (2.153)

2.11.3.2 To derive FRF from random vibration signals
The pair of equations (2.152) provides us with the basis for a method of
determining a system’s FRF properties from the measurement and
analysis of a random vibration test. Using either of them, we have a
simple formula for determining the FRF from estimates of the relevant
spectral densities:

H(w) = fx^
, usually identified as (to)

Szz(co)

or (2.154)

H(co) = t usually identified as H2(co)

In fact, the existence of two equations (and a third, if we include (2.151))
presents an opportunity to check the quality of calculations made using
measured (and therefore imperfect) data, as will be discussed in more
detail in Chapter 3.
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2.11.3.3 Instrumental variable model for FRF
In Chapter 3, we shall see that there are difficulties encountered in
implementing some of the above formulae in practice because of noise
and other limitations concerned with the data acquisition and
processing. A number of techniques will be developed in order to
circumvent or to minimise some of these problems and the first of these
is presented below, under the title of its control systems origin, the
‘instrumental variable’ formulation for the FRF of a system. That
formulation differs from those above in that three, rather than two,
quantities are involved in the definition of the output/input ratio. The
system considered can best be described with reference to Fig. 2.41
which shows first, in (a), the traditional two-channel, single-input,
single-output (SISO), model upon which the formulae such as (2.154)
are based. Then, in (b), is given a more detailed and representative
model of the system which is used in a modal test to measure the input
and output quantities in order to determine the FRF of the system,
H(a) . In this diagram, we show separately the various items which
make up the measurement system:

• exciter coil (voltage, r(t) )
• exciter armature (force, p(t) )
• input (i.e. force) transducer (force, f(t))
• test system
• response transducer (response, x'(t) )

However, in this configuration it can be seen that there are two
feedback mechanisms which apply, the first between the shaker and the
structure and the second between the response of the system and the
input transducer. Further, it is shown that both transducers’ output
signals are prone to noise, so that the quantities actually measured will
be f'(t) and x'(t) . We shall leave until Chapter 3 further discussion
about noise, and signal processing, but shall use this introduction to
define the new formula which is available for the determination of the
system FRF from measurements of the input and output quantities in a
system such as that shown in Fig. 2.41. The alternative formula is:

H(co) = ^£112^2
) which is usually identified as H3(co) (2.155)
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(b)

Fig. 2.41 System for FRF determination.
(a) Basic SISO model; (b) More complex SISO model with
feedback

2.11.3.4 Derivation of FRF from MIMO data
A natural extension of the preceding section is to the more general case,
already mentioned in passing in equation (2.153), where there are
several simultaneous inputs (excitations) and where the responses at
several points are obtained simultaneously. This is the general multi¬
input, multi-output (MIMO) case and is widely used as the basis for
FRF measurements in modal tests of large systems.

A diagram for the general n-input case is shown in Fig. 2.42, taken
from reference [25], The algebra required to derive the required
formulae is somewhat tedious and so the inquisitive reader is directed
to the reference for full details which lead to the following:

or, if the original, simpler, version is to be used, to:

(2.157)

In practical application of both of these formulae, care must be taken to
ensure the non-singularity of the spectral density matrix which is to be
inverted and it is in this respect that the former version may be found to
be more reliable. Also, the expressions need to be generalised to the
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Fig. 2.42 System for FRF determination via MIMO model

case where there are a different number of response parameters to the
number of inputs, or excitations, here defined as n. In this latter case,
the matrices concerned will be rectangular and will require a
generalised inversion, rather than the simple inverse shown above.

2.12 COMPLETE AND INCOMPLETE MODELS
2.12.1 Some Definitions
Most of the preceding theory has been concerned with complete models;
that is, the analysis has been presented for an N degree-of-freedom
system with the implicit assumption that all the mass, stiffness and
damping properties are known and that all the elements in the
eigenmatrices and the FRF matrix are available. While this is a valid
approach for a theoretical study, it is less generally applicable for
experimentally-based investigations where it is not usually possible to
measure all the DOFs, or to examine all the modes possessed by a
structure. Because of this limitation, it is necessary to extend our
analysis to examine the implications of having access to something less
than a complete set of data, or model, and this leads us to the concept of
a ‘reduced’ or ‘incomplete’ type of model.

It is appropriate here to introduce a few additional definitions which
will be used throughout this book when dealing with the various types
of incomplete model. A complete model is one which is fully defined by
its description. This can be achieved in any of the three types of model if
all the individual mass stiffness and damping elements are included
(spatial model), or if all the modes (natural frequencies and mode
shapes) are included or if all the FRF data are known over a frequency
range which includes all the modes (response model). This means that
the full N x N matrices are available for the different mathematical
descriptions. Models become incomplete when less than the above
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information is available, or displayed.
There are different types of incomplete model. There is the model

which is reduced in size (from N to n) by simply deleting information
about certain degrees-of-freedom. This process leads to a reduced model
which retains full accuracy for the DOFs which are retained, but which
loses access to those which have been deleted. The process can be
applied only to the modal and response models and results in a modal
model described by an N x N eigenvalue matrix but by an eigenvector
matrix which is only n x N. The corresponding response model is an
incomplete FRF matrix of size n x n, although all the elements of that
reduced matrix are themselves fully accurate. Another type of reduced
model is one in which the number of modes (i.e. natural frequencies) is
reduced as well (from N to m), so that the eigenvalue matrix is only
m x m in size. A consequence of this is that the elements in the reduced
n x n FRF matrix in this case are only approximate (see further
discussion below).

Another type of model reduction can be achieved by condensation
from N to n DOFs. This is a process in which a number of DOFs are
again eliminated from the complete description but an attempt is made
to include the effects of the masses and stiffnesses which are thereby
eliminated in the retained DOFs. This is the condensation process
which is applied in the Guyan and other reduction techniques used to
contain the size of otherwise very large finite element models. In such a
condensed model, the spatial, modal and response models are all
reduced to n x n matrices, and it must be noted that the properties of
each are approximate in every respect.

Lastly, it should be mentioned that it is sometimes required to seek
to recover a full-sized model of a structure’s dynamics from the basis of
an incomplete model. This can be attempted by one of various processes
of interpolation and leads to an expanded model, usually of full size
(N x N), but great care should be exercised in making any use of such a
model.

2.12.2 Incomplete Response Models
As intimated, there are two ways in which a model can be incomplete —
by the omission of some modes, and/or by the omission of some degrees-
of-freedom — and we shall examine these individually, paying
particular attention to the implications for the response model (in the
form of the FRF matrix). Consider first the complete FRF matrix, which
is A x A:

and then suppose that we decide to limit our description of the system
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to include certain DOFs only (and thus to ignore what happens at the
others, which is not the same as supposing they do not exist). Our
reduced response model is now of order n x n, and is written as:

Now, it is clear that as we have not altered the basic system, and it still
has the same number of degrees-of-freedom even though we have
foregone our ability to describe the system’s behaviour at all of them. In
this case, the elements which remain in the reduced FRF matrix are
identical to the corresponding elements in the full N x N matrix. In
other words, the reduced matrix is formed simply by retaining the
elements of interest and removing or deleting those to be ignored.

At this point, it is appropriate to mention the consequences of this
type of reduction on the impedance type of FRF data. The impedance
matrix which corresponds to the reduced model defined by [HR] will be
denoted as [Z^] and it is clear that

^K(©)]= (2.158)

It is also clear that the elements in the reduced impedance matrix such
as Zfy are not the same quantities as the corresponding elements in
the full impedance matrix and, indeed, a completely different
impedance matrix applies to each specific reduction. Thus:

but Z^^^Z^)
We can also consider the implications of this form of reduction on

the other types of model, namely the modal model and the spatial
model. For the modal model, elimination of the data pertaining to some
of the DOFs results in a smaller eigenvector matrix, which then
becomes rectangular or order n x N. This matrix still retains N columns,
and the corresponding eigenvalue matrix is still N x N because we still
have all N modes included.

For the spatial model it is more difficult to effect a reduction of this
type. It is clearly not realistic simply to remove the rows and columns
corresponding to the eliminated DOFs from the mass and stiffness
matrices as this would represent a drastic change to the system. It is
possible, however, to reduce these spatial matrices by a number of
methods which have the effect of redistributing the mass and stiffness
(and damping) properties which relate to the redundant DOFs amongst
those which are retained. In this way, the total mass of the structure,
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and its correct stiffness properties can be largely retained. The Guyan
reduction procedure is perhaps the best known of this type although
there are several modelling techniques (see later, Chapter 5). Such
reduced spatial properties will be denoted as:

Next, we shall consider the other form of reduction in which only m of
the N modes of the system are included. Frequently, this is a necessary
approach in that many of the high-frequency modes will be of little
interest and almost certainly very difficult to measure. Consider first
the FRF matrix and include initially all the DOFs but suppose that each
element in the matrix is computed using not only tn of the N terms in
the summation, i.e.

mZN ^jk
^jk (®) 22 2 2 • 2— CO + COp

In full, we can write the FRF matrix as:

(2.159)

[ff(“)lvxN - [®Lvxm[(^r “ “2)Lxm Hmx.V (2.160)

Of course, both types of reduction can be combined when the resulting
matrix would be denoted:

It can be seen from (2.160) that the FRF matrix thus formed, [H^(co)] ,
will, in general, be rank deficient, and thus it will not be possible to
obtain the impedance matrix by numerical inversion. This remains the
case as long as n > tn (and can even be found in cases where n < tn) and
so the numerical condition of matrices of incomplete models is
frequently found to be a cause for concern. In order to overcome these
problems, it is often convenient to attempt to provide an approximate
correction to the FRF data to compensate for the errors introduced by
Raving out some of the terms. This is usually effected by adding a
constant or ‘residual’ term to each FRF, as shown in the following
equation:

[H(®)]4w)]+M (2.161)
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The consequence of neglecting some of the modes on the modal model is
evident in that the eigenvalue matrix becomes of order m x m and the
eigenvector matrix is again rectangular, although in the other sense,
and we have:

[^rLm >

2.12.3 Incomplete Modal and Spatial Models
It has been shown earlier that the orthogonality properties of the modal
model provide a direct link between the modal model and the spatial
model:

which can be inverted to yield:

kh-1 (2.162)

If the modal model is incomplete, then we can note the implications for
the orthogonality properties. First, if we have a modal incompleteness
(m < N modes included), then we can write:

= Wnixm >' [®LxNMWiVxm = [“r Inxm
However, if we have a spatial incompleteness (only n < N DOFs
included), then we cannot express any orthogonality properties at all
because the eigenvector matrix is not commutable with the system mass
and stiffness matrices. In both reduced-model cases, it becomes
impossible to use (2.162) to re-construct the system mass and stiffness
matrices from an incomplete modal model. Even in the special case
where m = n, in which case we have square reduced eigenvector and
eigenvalue matrices and can — in theory — compute the inverses
required by the equation (2.162), these matrices are generally singular
and thus not invertible. Even if they are numerically non-singular,
there is no theoretical basis for applying (2.162) in this case and any
mass and stiffness matrices produced by such application have no
physical significance and should not be used.

Fig. 2.43 shows the relationship between different forms of complete
and incomplete models.
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2.13 SENSITIVITY OF MODELS
2.13.1 Introduction
There are an increasing number of applications of the structural
dynamics models which we are in the course of developing that make
use of the sensitivity properties of the models. These sensitivities
describe the rates of change of some of the key properties — such as
natural frequencies or mode shapes — with small changes in some of
the model parameters, such as individual masses or stiffnesses. The
model sensitivities are required for various purposes:

they help to locate errors in models in updating applications;
• they are useful in guiding design optimisation procedures, and
• they are used in the course of curve-fitting for the purposes of

testing the reliability of the modal analysis processes.

It will be helpful to include here a short summary of the main
sensitivity parameters and to show how they may be deduced from both
theoretically- and experimentally-derived models.

2.13.2 Modal Sensitivities
The most commonly-used sensitivities are those which describe the
rates of change of the modal parameters with the individual mass and
stiffness elements in the spatial model. These quantities are defined in
general as follows:

d(or ,—- and
op op

where p represents any variable of interest.

(a) SDOF system
It is useful to approach the general expressions for these parameters via
a very simple example based on an undamped SDOF system. We can
introduce the concept of sensitivity through the basic SDOF system
comprising mass, in, and spring, k, and we can define the basic
sensitivities of the system’s natural frequency, coo , with respect to these
two design parameters as:

dm
and ^2

dk

respectively. We can readily show that these two sensitivities can be
expressed as follows:
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3(d0 9<oo 5 / -i) _2—— = 2a>n —— = \km ]=-km
dm dm dm' 7

da0 _ Jk
dm

” 2^
and:

5coo _ 1
dk 2yjkm

(2.163)

(h) MDOF systems — eigenvalue sensitivity
We may now approach the more general case of the undamped MDOF
system which we have analysed in detail earlier in this chapter. From
Section 2.4 we can recall the following equation:

-{0}

which we can now differentiate with respect to an arbitrary variable, p,
that might be an individual mass or stiffness in the original model,
or kj , or which might be an individual element in the spatial model
matrices, m;; or ku .

(2.164)
! op op op op

rpNext, we can premultiply this expression by {<()} r :

2^ 2* 2^ 2' .

or

op op J op

and so
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-0>r (2.165)

This result can be checked against the earlier simple case for an SDOF
system because in that case, 4> is simply (1/ Jm ) so that we have:

dm { om r dm )™r fm"
k

as before.

(c) MDOF systems — eigenvector sensitivity
A similar, although somewhat lengthier, analysis can be made for the
eigenvector sensitivity terms, as follows. We can use the previous
equation (2.164) together with the fact that the eigenvector sensitivity
term can always be expressed as a linear combination of the original
eigenvectors:

MSra kb = M <2.166)
op dp op

This time, we shall premultiply the equation by and exploit the
various orthogonality properties which apply to form:

* -J J J op op op

so

op )

hence yrs and thence
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2.13.3 FRF Sensitivities
It may be seen that it is also possible to derive FRF sensitivities, as well
as the classical modal terms. If we consider first the simple SDOF
system for which the receptance FRF, a(<o), is given by:

a(oj)=
k + iac -<d2 m

Differentiate with respect to m, k to yield:

It can be shown that this simple expression can be extended to the more
general case for MDOF systems as follows:

#3= [«(«>)/fW|+iof®-co2 f [a(a>)]
dp L V dp J Idp J < dp V 'J (2.169)

from which equation it is possible to derive the simple case shown in
equation (2.168) above as well as many other cases.

2.13.4 Modal Sensitivities from FRF Data
As mentioned above, most model sensitivity studies are restricted to use
with the theoretical models which are required at various stages of
structural dynamic analysis. However, there exists the possibility of
deriving certain of the above-mentioned sensitivity parameters directly
from FRF data such as can be measured in a modal test. Essentially, it
is possible to derive expressions for the eigenvalue sensitivities to
selected individual mass and stiffness parameters by analysing the
point FRF properties at the selected DOFs.

Specifically, it can be shown [26] that an expression can be derived
which describes the eigenvalue sensitivities for a particular DOF (j) in
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terms of the frequencies of resonance and antiresonance on the point
FRF at that DOF, Hjj(a) :

s=l i=l 1 d<or 170)
dmj rrl 21 2 21 “r dkj

s=l «=1;?^

where

a>r = natural frequency of mode r;
jj^i - ith antiresonance frequency on point FRF at DOF j:

Clearly, the accuracy of this expression depends upon the number of
resonance and antiresonance frequencies which are included in the
frequency range of the measurement, and so the application of the
formula will always result in an approximate answer. However, it must
be remembered that the sensitivity expressions which are being
discussed here are themselves only valid for infinitesimal changes of
mass, or stiffness, and may not be applied at will for arbitrary mass and
stiffness errors (in model updating) or modifications (in structural
optimisation tasks). See Chapter 6 for a more detailed discussion of
these applications.

The last point can be depicted graphically in the plots of Fig. 2.44
which show how each of the natural frequencies of a test structure will
change as a mass of increasing magnitude is added to the specific test
DOF to which the displayed FRF refers. It is clear that these natural
frequencies reduce linearly at first, in accordance with the relevant
sensitivity coefficient, but that they become progressively less and less
effective in lowering these natural frequencies until, as these approach
the antiresonance frequencies of the original structural configuration, a
limiting value is reached.

2.14 ANALYSIS OF WEAKLY NON-LINEAR STRUCTURES
2.14.1 General — Approximate Analysis of Non-linear

Structures
Before concluding our review of the theoretical basis of the subject, it is
appropriate to include a consideration of the possibility that not all the
systems or structures encountered in practice will be linear. All the
preceding analysis and, indeed, the whole basis of the subject, assumes
linearity, an assumption which has two main implications in the
present context:
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Fig. 2.44 Natural frequency dependence on added mass

(i) that doubling the magnitude of the excitation force would simply
result in a doubling of the response, and so on (response linearly
related to excitation), and

(ii) that if two or more excitation patterns are applied simultaneously
then the response thus produced will be equal to the sum of the
responses caused by each excitation applied individually (i.e. the
principle of linear superposition applies).

We shall now introduce some of the characteristics exhibited by weakly
(i.e. slightly) non-linear systems, not in order to provide detailed
analysis but so that such structural behaviour can be recognised and
identified if encountered during a modal test. Thus we shall seek to
derive and illustrate the frequency response characteristics of such
systems.

The equation of motion for a single degree of freedom system with
displacement- and/or velocity-dependent non-linearity and undergoing
steady-state harmonic excitation, can be written as:

zn(x + 2^a>0 x + oq x + p(x,x)j= /(/) = Fq cosat (2.171)
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This equation can be expressed approximately as

?nlx + Xx + Sq x Fo coscot (2.172)

where X and Sq depend on the amplitude (Xo) and frequency (co) of
vibration, according to:

X = p(X0 cos<|),- A'o co sin.<J))sin 4> c?cj)
Tram

Sq = C0q + — p(X0 cos -Xo cosin (|))cos <|) d<j)
Tia

(2.173)

This is sometimes referred to as the Harmonic Balance Method and
it provides an approximate solution to the complicated situation in
which the simple harmonic excitation produces a response which
contains several harmonic components (including, but not only, one at
the excitation frequency, co). The approximate solution yields the
amplitude of the fundamental component of the response (i.e. the
component at the excitation frequency, co) and this is of interest because
it is a quantity that we shall be able to measure in practical tests.

We shall confine our attention here to two specific cases of practical
interest, namely

(a) cubic stiffness, where the spring force is given by k(x + Px3) , and
(b) coulomb friction, where (some of) the damping is provided by dry

friction.

2.14.2 Cubic Stiffness Non-linearity
In this case, we have a basic equation of motion of the form

m (x + 2^ coo x + Oq (x + Px3 ))= /(t)

m (x + X x + So x) = f(t)

where

X — 2^ coq

and (2.174)

“o - “o (1+ 3P /4)
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In the case of harmonic excitation, f(t)= Femt , we find that in fact the
response x(t) is not simply harmonic — the non-linearity causes the
generation of some response (generally small) at multiples of the
excitation frequency — but it is convenient to examine the component of
the response at the excitation frequency. (Note that this is just what
would be measured in a sinusoidal test, though not with a random,
periodic or transient test.) Then we shall find:

xM^X^ ; Xo=— (2.175)
<0q — co + iXco

where Sg and X are themselves functions of Xo. Equation (2.175) needs
further processing to find an explicit expression for Xo. This is obtained
from:

(3P a>§$X% -(3(^ -0?)p cog /2)^
+((o>o -ra2)+(2^coo af)x^-(F/mf =0 (2.176)

which shows that there can either be one or three real roots. All cubic
stiffness systems exhibit this characteristic although the existence of
the two types of solution (one possible value for Xo , or three) depends
upon the frequency and the magnitude of the excitation and/or the non¬
linearity. Some typical plots are shown in Fig. 2.45, computed using the
above expressions.

Another way of interpreting the approximation involved in this
approach is by examining the force/displacement characteristic for this
system, shown in Fig. 2.46. It can be seen that when the system is
undergoing steady-state vibration with amplitude ±X0 , the system has
an effective stiffness given by the slope of the straight line joining the
two extremities on the load-displacement curve. While the true
characteristics of the structure are clearly more complicated than this
simple representation, it does provide a practical means of representing
the non-linear system by an equivalent linear one for the purpose of
applying linear modal analysis theory to an essentially non-linear
system.
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Fig. 2.45 FRF characteristic for system with cubic stiffness non-linearity

Fig. 2.46 Force deflection characteristic of typical non-linear system
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2.14.3 Coulomb Friction Non-linearity
In this case, we have a basic equation of motion of the type:

m(x + 2<^(00 x + Oq x)+ = f(t)

or (2.177)

m (x + Xx + So x)= f(i) = m F(t)

where

~ 42?X - 2^ coo + X(x Aq <d0 m)
(2.178)

~2 2
“0 =“0

Once again, a harmonic excitation will produce a more complex, though
periodic, response whose fundamental component is given by

where Ao is obtained from

(®o -co2)2 +(2^(oo co)2^Xq + co2 r/ti^Xq
+ ((47?co/xcoo)2-(F/m)2)=O (2.179)

Further analysis of this expression shows that only a single value of Xq
applies. Plots of (Xo / F) for various values of F and/or R are illustrated
in Fig. 2.47.

2.14.4 Other Non-linearities and Other Descriptions (Higher-
order FRFs)

Other nonlinearities which are likely to be encountered in modal testing
of real structures include:

• Backlash
• Bilinear stiffness
• Microslip friction damping
• Quadratic (and other power law) damping
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Fig. 2.47 FRF characteristic for system with dry friction damping non¬
linearity

Details of the essential characteristics of these elements can be found in
specialist texts on non-linear behaviour (e.g. [27]).

We have here limited our interest to the approximate approach in
which just the first-order FRF functions have been derived, and that is
a necessary restriction if we are to limit our activities to the methods of
conventional modal testing. It is, however, appropriate to mention that
the essential feature of non-linear systems — that a single frequency
excitation produces a multi-frequency response — gives rise to a family
of higher-order response functions than the type we have been dealing
with hitherto. Although the treatment of these higher-order FRFs is
well outside the scope of this work, it is appropriate to indicate the
direction in which a more detailed and accurate analysis of this class of
system will take. The processing and interpretation of these complicated
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functions constitutes a specialist study in its own right and, for the time
being, is beyond the grasp of the conventional modal analysis and
testing tools. The interested reader — who has encountered non-linear
effects on a scale that cannot be treated by the approximate procedures
advocated in this book — is directed towards references such as [25] for
a more thorough explanation of these advanced concepts.
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CHAPTER 3

FRF Measurement
Techniques

3.1 INTRODUCTION AND TEST PLANNING
3.1.1 Introduction
In this chapter we shall be concerned with the measurement techniques
which are used for modal testing. First, it is appropriate to consider
vibration measurement methods in general in order to view the context
of those used for our particular interest here. Basically, there are two
types of vibration measurement:

(i) those in which just one type of parameter is measured (usually
the response levels), and

(ii) those in which both input and response output parameters are
measured.

Recalling the basic relationship:

RESPONSE PROPERTIES INPUT

we can see that only when two of the three terms in this equation have
been measured can we define completely what is going on in the
vibration of the test object. If we measure only the response, then we
are unable to say whether a particularly large response level is due to a
strong excitation or to a resonance of the structure. Nevertheless, both
types of measurement have their applications and much of the
equipment and instrumentation used is the same in both cases.

We shall be concerned here with the second type of measurement,
where both excitation and response are measured simultaneously so
that the basic equation can be used to deduce the system properties
directly from the measured data. Within this category there are a
number of different approaches which can be adopted but we shall
concentrate first on one which we refer to as the ‘single-point excitation’
method. Later we shall progress to discussing the more general
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approach which involves simultaneous excitation at several points on
the structure, although we shall see that this approach carries with it
both advantages and disadvantages. Our interest will first be focused
on the more straightforward approach (at least from the viewpoint of
the experimenter) where the excitation is applied at a single point
(although in the course of a test, this point may be varied around the
structure). Measurements of this type are often referred to as ‘mobility
measurements’ or ‘FRF measurements’, and these are the names we
shall use throughout this work. Indeed, our goal in the measurement
phase of a modal test is to measure the FRF data which are necessary
for the subsequent modal analysis and modelling phases. Responses
obtained using a single excitation yield FRF data directly, simply by
‘dividing’ the measured responses by the measured excitation force.
These are referred to as SISO (single-input, single-output) or SIMO
(single-input, multiple-output) tests. Responses obtained using several
simultaneous excitations yield operating deflection shapes (ODSs) from
which it is necessary to extract the required FRF data by sometimes-
complicated analysis procedures. These are referred to as MIMO (multi¬
input, multi-output) tests.

3.1.2 Test Planning
We shall see that the choice of method we use to perform the test, and
which data we measure, will be of paramount importance to the success
of the venture, taking due account of the reasons why each test is being
performed in the first place. It is appropriate to recall from Chapter 1
that a series of five Levels of Test have been identified [12], and that
each modal test should be classified according to its application
objectives before any measurements are even planned. These Test
Levels are:

Level 0: estimation of natural frequencies and damping factors;
response levels measured at few points; very short test times.

Level 1: estimation of natural frequencies and damping factors; mode
shapes defined qualitatively rather than quantitatively.

Level 2: measurements of all modal parameters suitable for tabulation
and mode shape display, albeit un-normalised.

Level 3: measurements of all modal parameters, including normalised
mode shapes; full quality checks performed and model usable
for model validation.

Level 4: measurements of all modal parameters and residual effects for
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out-of-range modes; full quality checks performed and model
usable for all response-based applications, including
modification, coupling and response predictions.

It is clear that there will need to be an extensive test planning phase
before full-scale measurements are made and decisions taken
concerning the methods of excitation, signal processing and data
analysis, as well as the proper selection of which data to measure,
where to excite the structure and how to prepare and support it for
those measurements. In this Chapter we shall be concerned with the
details of how each type of procedure or device works and less with the
making of these choices. To some extent, such decisions can only be
made on the basis of experience of using the various alternatives but
some guidance in their formulation may be found in such references as
the DTA Handbook [12] as well as in the various User Guides for the
software and hardware systems which are used for this type of test.
Accordingly, our aim here is to explain the basis and operation of the
various devices and techniques in question.

Having said that, it is appropriate to note that recent developments
in modal testing have led to a series of procedures for the determination
of the optimum choice of various parameters, including exciter and
response transducer locations. These methods are based on the pre-test
existence of some form of theoretical model of the test structure which
they use to identify the most (and least) important or propitious areas of
the structure from consideration of the various demands of:

° support points (to minimise external influences);
excitation points (to ensure effective excitation of all modes); and —
most important of all —

" response points (to ensure adequate coverage of all mode shapes so
as to permit clear identification and discrimination of those in the
test range).

These methods are discussed in more detail in Chapter 6, Section 6.6.

3.1.3 Checking the Quality of Measured Data
Nowadays, concern with quality assurance has heightened awareness of
the needs to ensure the highest reliability and accuracy of the data we
measure and of the results we obtain by its subsequent processing. To
this end, it is appropriate at the start of this Chapter to itemise some of
the features which need constant checking throughout a modal test, in
order to enable results to be obtained of the highest quality possible by
the equipment and methods used.
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3.1.3.1 Signal quality
Usually, the first concern is to the acquisition of signals of sufficient
strength and clarity, and that are free of excessive noise. Apart from the
obvious issues of proper selection of transducer and conditioning
electronics, it is sometimes found that the dynamic range of the
measured quantities is extreme, especially when the frequency range
being covered is wide — more than a decade in frequency. What often
happens is that there is a very large component of signal in one
frequency range and this dictates the gain settings on amplifiers and
analysers such that lower-level components of the signal are difficult to
measure accurately. In these circumstances, it is preferable to restrict
the frequency range of the measurements so that all components of
interest have sufficient signal strength to permit their accurate
measurement. It should be noted that in following such advice, it is
important to ensure that the signal offered to the amplifier/analyser has
been suitably amended, and not just the range of the measurement
(i.e. if there is a large component in a signal at 500 Hz which is
‘drowning-out’ much smaller components at, say, 100 Hz, then it is not
sufficient just to change the measurement range to 0-200 Hz: the
component at 500 Hz must be removed from the signal altogether).

3.1.3.2 Signal fidelity
Another, similar, problem can arise whereby the signals obtained do not
truly represent the quantity which is to be measured. An example of
this problem is provided by the transverse sensitivity property
exhibited by most accelerometers and other response transducers used
in modal tests. Sometimes, motion of the transducer is much greater in
a direction perpendicular to its measurement axis (than in the
measurement direction) with the result that the output is heavily
contaminated by the transverse sensitivity component, sometimes
giving quite misleading indications as to the motion of the structure.

There are other circumstances which can lead to erroneous
measurements, including the incorrect labelling or connection of
transducers, cables and channels to the data acquisition system. These
can only be eradicated by careful housekeeping during testing but there
is one other check which can be applied, at least on selected
measurements. That is the check of the basic pattern of resonances and
antiresonances visible on the FRF curves. It has already been noted
that for any point FRF (excitation and response at the same DOF),
resonances and antiresonances must alternate. Also, the incidence of
antiresonances in an FRF curve is related, loosely, to the degree of
separation of the two DOFs to which that FRF refers: excitation and
response points which are well-separated on the test structure will tend
to possess fewer antiresonances than will those which have these two
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points much closer together. This is not a rigorous check, nor a fail-safe
one, but it is useful in assuring that gross errors have not been
introduced.

3.1.3.3 Measurement repeatability
One obvious and essential check for any modal test is that which tests
the repeatability of certain measurements. Certain FRFs should be re¬
measured from time to time, just to check that neither the structure nor
the measurement system have experienced any significant changes.
There are several reasons why the test structure might change its
properties perceptibly throughout a test programme, and if these
changes are non-trivial, their consequences can have serious effects on
the subsequent analysis processes to which the measured data are
subjected.

3.1.3.4 Measurement reliability
This is a slightly different check to that of repeatability, in which
nominally-identical measurements are made, and it seeks to establish
that the measured data are independent of the measuring system. In
such a reliability check, a given quantity (usually, an FRF) would be
measured using a slightly different setup, or procedure such as a
different excitation signal, to that used for the original measurement.
Such checks are more expensive than simple repeatability ones, but are
very important to demonstrate the underlying validity of the
measurement method being used.

3.1.3.5 Measured data consistency, including reciprocity
Yet another variation on the repeatability/reliability theme is that of
consistency. The various FRF data measured on a given structure
should (in some cases, must) exhibit consistency, by which is meant that
the underlying natural frequencies, damping factors and mode shapes
visible in the FRF data must all derive from a common modal model. It
is unacceptable if the natural frequency of mode 1 appears to be slightly
different in FRF Hy to the value which is apparent in a second FRF,
II pq . Equally, the reciprocity expected to exist between FRFs such as
II jk and should be checked and found to be at an acceptable level.
Of course, it may be difficult to prescribe what is ‘acceptable’ in such
circumstances, but the checks should be made anyway, so that the level
of consistency is known, even if it is difficult to make a judgement on its
acceptability.

There are several reasons why the measured data may exhibit a
degree of inconsistency, and these will depend heavily on the
measurement method(s) employed in the test. If the FRFs which make
up the complete set are measured individually, one at a time and
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sequentially, then there are two common causes for the resulting data
to be inconsistent: (i) because during the finite time it takes for the data
to be gathered, the structure has actually changed its properties,
perhaps due to variations in temperature, or to the consequences of
continued vibration; and/or (ii) because the test setup conditions are
changed in order to excite or to measure at different points of interest
on the structure. Changes in the local added mass or stiffness which
result from attaching exciters or transducers will cause the structure
which is tested to differ slightly from FRF curve to FRF curve. These
effects can result in a degree of inconsistency in the data which needs at
best to be known about and at worst to be removed.

3.2 BASIC MEASUREMENT SYSTEM
The experimental setup used for mobility measurement is basically
quite simple although there exist a great many different variants on it,
in terms of the specific items used. There are three major items:

(i) an excitation mechanism;
(ii) a transduction system (to measure the various parameters of

interest); and
(iii) an analyser, to extract the desired information (in the presence of

the inevitable imperfections which will accumulate on the
measured signals).

Fig. 3.1 General layout of FRF measurement system
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Fig. 3.1 shows a typical layout for the measurement system,
detailing some of the ‘standard’ items which are usually found. The
component in this illustration labelled ‘Controller’ is nowadays usually
provided by a complex software package but should be read so as to
include the user him- or herself since the effective use of such test
equipment retains the need for intelligent input and choices by the test
engineer, notwithstanding the power and speed of today’s computers.
Many of the detailed procedures in FRF measurements are repetitive
and tedious, and so some form of automation is essential but, if
provided by a computer, this can also serve to process the measured
data as required for the modal analysis stage, later in the overall
process.

The main elements in the measurement chain are, then:

(a) A source for the excitation signal. This will depend on the type of
test being undertaken and can be any of the following:

• sinusoidal (from an oscillator),
• periodic (from a special signal generator capable of producing a

specific frequency content).
• random (from a noise generator),
• transient (from a special pulse or burst signal generating

device, or by applying an impact with a hammer),

(b) Power amplifier. This component will be necessary in order to
drive the actual device used to vibrate the structure which, in
turn, will take one of a number of different forms, as discussed
below. The power amplifier will necessarily be selected to match
the excitation device.

(c) Exciter. The structure can be excited into vibration in several
ways, although the two most commonly (and successfully) used
are by an attached shaker or by a hammer blow. Other
possibilities exist by step relaxation (releasing from a deflected
position) and by ambient excitation (such as wave, wind or
roadway excitations), but these are relatively special cases which
are only used when the more conventional methods are not
possible.

(d) Transducers. Here again, there are a great many different
possibilities for the devices available to measure the excitation
forces and the various responses of interest. For the most part,
piezoelectric transducers are widely used for both types of
parameter although strain gauges are often found to be
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convenient because of their minimal interference with the test
object. More recently, lasers have become commonplace in the
modal testing laboratory, both to provide recordable and
analysable holographic images of vibrating structures and, most
recently, to provide a non-contact response transducer in the form
of the (sometimes, scanning) Laser Doppler Velocimeter (LDV).

(e) Conditioning Amplifiers. The choice of amplifier depends heavily
on the type of transducer used and should, in effect, be regarded
as part of it. In all cases, its role is to strengthen the (usually)
small signals generated by the transducers so that they can be fed
to the analyser for measurement.

(f) Analyser. The function of this item is simply to measure the
various signals developed by the transducers in order to ascertain
the magnitudes of the excitation force(s) and responses. In
essence, it is a voltmeter but in practice it is a very sophisticated
one. There are different types of analyser available and the choice
will depend on the type of excitation which has been used:
sinusoidal, random, transient, periodic. The two most common
devices are Spectrum (Fourier) Analysers and Frequency
Response Analysers although the same functions as provided by
these can be performed by a tuneable narrow-band filter, a
voltmeter and a phase meter plus a great deal of time and
patience!

3.3 STRUCTURE PREPARATION
3.3.1 Free and Grounded Supports
One important preliminary to the whole process of FRF measurement is
the preparation of the test structure itself. This is often not given the
attention it deserves and the consequences which accrue can cause an
unnecessary degradation of the whole test.

The first decision which has to be taken is whether the structure is
to be tested in a ‘free’ condition or ‘grounded’.

3.3.1.1 Free supports
By ‘free’ is meant that the test object is not attached to ground at any of
its coordinates and is, in effect, freely suspended in space. In this
condition, the structure will exhibit rigid body modes which are
determined solely by its mass and inertia properties and in which there
is no bending or flexing at all. Theoretically, any structure will possess
six rigid body modes and each of these has a natural frequency of 0 Hz.
By testing a structure in this free condition, we are able to determine



171

the rigid body modes and thus the mass and inertia properties which
can themselves be very useful data.

In practice, of course, it is not feasible to provide a truly free support
— the structure must be held in some way — but it is generally feasible
to provide a suspension system which closely approximates to the free
condition. This can be achieved by supporting the testpiece on very soft
‘springs’, such as might be provided by light elastic bands, so that the
rigid body modes, while no longer having zero natural frequencies, have
values which are very low in relation to those of the bending modes
(‘very low’ in this context means that the highest rigid body mode
frequency is less than 10 to 20 per cent of that for the lowest bending
mode). If we achieve a suspension system of this type, then we can still
derive the rigid body (inertia) properties from the very low frequency
behaviour of the structure without having any significant influence on
the flexural modes that are the object of the test. (In fact, there are
several instances where a test of this type may be carried out only to
examine the rigid body modes as this is an effective way of determining
the full inertia properties of a complex structure.) One added precaution
which can be taken to ensure minimum interference by the suspension
on the lowest bending mode of the structure — the one most vulnerable— is to attach the suspension as close as possible to nodal points of the
mode in question. At the same time, particular attention should be paid
to the possibility of the suspension adding significant damping to
otherwise lightly-damped testpieces.

As a parting comment on this type of suspension, it is necessary to
note that any rigid body will possess no less than six modes and it is
necessary to check that the natural frequencies of all of these are
sufficiently low before being satisfied that the suspension system used
is sufficiently soft. To this end, suspension wires, etc. should generally
be normal to the primary direction of vibration, as in Fig. 3.2(b) rather
than in the same direction as these supports.

Selection of the optimum suspension points is one of the features
offered by the test planning procedures referred to above in 3.1.2, and
described in detail later, in Chapter 6.

3.3.1.2 Grounded supports
The other type of support is referred to as ‘grounded’ because it
attempts to fix selected points on the structure to ground. While this
condition is extremely easy to apply in a theoretical analysis, simply by
deleting the appropriate coordinates, it is much more difficult to
implement in the practical case. The reason for this is that it is very
difficult to provide a base or foundation on which to attach the test
structure which is sufficiently rigid to provide the necessary grounding.
All structures have a finite impedance (or a non-zero mobility) and thus
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cannot be regarded as truly rigid but whereas we are able to
approximate the free condition by a soft suspension, it is less easy to
approximate the grounded condition without taking extraordinary
precautions when designing the support structure. Perhaps the safest
procedure to follow is to measure the mobility FRF of the base structure
itself over the frequency range for the test and to establish that this is a
much lower mobility than the corresponding levels for the test structure
at the point of attachment. If this condition can be satisfied for all the
coordinates to be grounded then the base structure can reasonably be
assumed to be grounded. However, as a word of caution, it should be
noted that the coordinates involved will often include rotations and
these are notoriously difficult to measure.

From the above comments, it might be concluded that we should
always test structures in a freely supported condition. Ideally, this is so
but there are numerous practical situations where this approach is
simply not feasible and again others where it is not the most
appropriate (note the comments in Section 3.3.1.3, below). For example,
very large testpieces, such as parts of power generating stations or civil
engineering structures, could not be tested in a freely-supported state.
Further, in just the same way that low frequency properties of a freely
supported structure can provide information on its mass and inertia
characteristics, so also can the corresponding parts of the mobility
curves for a grounded structure yield information on its static stiffness.
Another consideration to be made when deciding on the format of the
test is the environment in which the structure is to operate. If we
consider a turbine blade, for example, it is clear that in its operating
condition the vibration modes of interest will be much closer to those of
a cantilevered root fixing than to those of a completely free blade.
Whereas it is possible to test and to analyse a single blade as a free
structure, the modes and frequencies which will then form the basis of
the test/analysis comparison will be quite different from those which
obtain under running conditions. Of course, theoretically, we can
validate or obtain a model of the blade using its free properties and
expect this to be equally applicable when the root is grounded, but in
the real world, where we are dealing with approximations and less-
than-perfect data, there is additional comfort to be gained from a
comparison made using modes which are close to those of the
functioning structure, i.e. with a grounded root.

3.3.1.3 Loaded boundaries
A compromise procedure can be applied in some cases in which the test
object (such as the blade in the preceding paragraph) is connected at
certain coordinates to another simple component of known mobility,
such as a specific mass. This modified or ‘loaded’ testpiece is then
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studied experimentally and the effects of the added component
‘removed’ analytically. This is a device which is used increasingly in
place of simple free supports. When a structure is tested in a free-free
condition, it is often found that there are many fewer modes observed in
a given frequency range than there will be for that same component
when it is installed in its final habitat (usually, as one part of a
structural assembly). Moreover, the modes of the structure as an
isolated free component are often quite different in form to those of the
installed condition — the free ends often contain virtually no strain
energy, for example — and so there may be questions as to the
suitability of a test in the free-free condition. It is possible to resolve
some of these questions by the device of loading the free boundaries of
the structure by adding simple masses there and taking account of
these masses in any theoretical model with which the test data may be
compared.

3.3.1.4 Perturbed boundary conditions
There is an extension of the above idea of loading the boundary surfaces
of a component known as the ‘perturbed boundary condition’ approach.
In a number of applications, including validation and updating of
theoretical models, there is often a dirth of experimental data available
from the modal test and so additional tests are sought wherever
possible. The data base for a given structure can be extended, or
‘enriched’, by the repetition of the modal test for different boundary
conditions. This, in effect, means testing several different structures,
but each is simply related to the others by the differences in the
boundary loads, and these are known exactly, and so a multiplicity of
test data can be derived from just the one test structure.

3.3.1.5 Summary
In the above paragraphs, we have presented a number of considerations
which must be made in deciding what is the best way to support the
test structure for FRF measurements. There is no universal method:
each test must be considered individually and the above points taken
into account. Perhaps, as a final comment for those cases in which a
decision is difficult, we should observe that, at least from a theoretical
standpoint, it is always possible to determine the grounded structure’s
properties from those in a free or loaded condition while it is not
possible to go in the opposite direction. (This characteristic comes from
the fact that the free support involves more degrees of freedom, some of
which can later be deleted, while it is not possible — without the
addition of new data — to convert the more limited model of a grounded
structure to one with greater freedom as would be necessary to describe
a freely-supported structure.)
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Examples of both types of test configuration are shown in Fig. 3.2.

3.3.2 Local Stiffening
If it is decided to ground the structure, care must be taken to ensure
that no local stiffening or other distortion is introduced by the
attachment, other than that which is an integral part of the structure
itself. In fact, great care must be paid to the area of the attachment if a
realistic and reliable test configuration is to be obtained and it is
advisable to perform some simple checks to ensure that the whole
assembly gives repeatable results when dismantled and reassembled
again. Such attention to detail will be repaid by confidence in the
eventual results.

3.4 EXCITATION OF THE STRUCTURE
3.4.1 General
Various devices are available for exciting the structure and several of
these are in widespread use. Basically, they can be divided into two
types: contacting and non-contacting. The first of these involves the
connection of an exciter of some form which remains attached to the
structure throughout the test, whether the excitation type is continuous

Fig. 3.2 Examples of (a) grounded, and (b) freely-supported structures
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Fig. 3.2 Examples of (a) grounded, and (b) freely-supported structures
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(sinusoidal, random etc.) or transient (pulse, chirp). The second type
includes devices which are either out of contact throughout the
vibration (such as provided by a non-contacting electromagnet) or which
are only in contact for a short period, while the excitation is being
applied (such as a hammer blow).

We shall discuss first the various types of vibrator, or shaker, of
which there are three in use:

mechanical (out-of-balance rotating masses);
electromagnetic (moving coil in magnetic field);
electrohydraulic.

Each has its advantages and disadvantages — which we shall attempt
to summarise below — and each is most effective within a particular
operating range, as illustrated by some typical data shown in Fig. 3.3. It
should be noted that exciters are often limited at very low frequencies
by the stroke (displacement) rather than by the force generated.

Fig. 3.3 Typical exciter characteristics

3.4.2 Mechanical Exciters
The mechanical exciter, which uses rotating out of balance masses, is
capable of generating a prescribed force at a variable frequency
although there is relatively little flexibility or control in its use. The
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magnitude of the force is restricted by the out-of-balance and is only
variable by making adjustments to this quantity — not something
which can be done while the vibration is continuing. Also, this type of
excitation mechanism is relatively ineffective at low frequencies
because of the speed-squared dependence. However, unless the
amplitude of vibration caused by the exciter becomes large relative to
the orbit of the out-of-balance masses, the magnitude and phase of the
excitation force is known quite accurately and does not need further
measurement, as is the case for the other types of exciter.

3.4.3 Electromagnetic Exciters
The electromagnetic principle has long been used to generate vibrations
in structures for the purpose of what we today call ‘modal testing’. The
simplest of these applications is through the direct application of a
magnetic force on the structure to be excited, without any direct
physical contact. This method has its attractions but also presents
severe problems of control and is not widely used, except in special
cases. Some of these are of interest in the testing of rotating machines
and are discussed separately below, in Section 3.4.8.

However, perhaps the most common type of exciter is the
electromagnetic (or ‘electrodynamic’) shaker in which the supplied input
signal is converted to an alternating magnetic field in which is placed a
coil which is attached to the drive part of the device, and to the
structure. In this case, the frequency and amplitude of excitation are
controlled independently of each other, giving more operational
flexibility — especially useful as it is generally found that it is better to
vary the level of the excitation as resonances are passed through.
However, it must be noted that the electrical impedance of these devices
varies with the amplitude of motion of the moving coil and so it is not
possible to deduce the excitation force from a measurement of the
voltage applied to the shaker. Nor, in fact, is it usually appropriate to
deduce the excitation force by measuring the current passing through
the shaker because this measures the force applied not to the structure
itself, but to the assembly of structure and shaker drive. Although it
may appear that the difference between this force (generated within the
shaker) and that applied to the structure is likely to be small, it must be
noted that just near resonance very little force is required to produce a
large response and what usually happens is that without altering the
settings on the power amplifier or signal generator, there is a marked
reduction in the force level at frequencies adjacent to the structure’s
natural frequencies. As a result, the true force applied to the structure
becomes the (small) difference between the force generated in the
exciter and the inertia force required to move the drive rod and shaker
table and is, in fact, much smaller than either. See Fig. 3.4(a).
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Fig. 3.4 Variations in measured parameters around resonance for shaker
attached to structure.
(a) Shaker-structure model; (b) Measured data at point 1;
(c) Measured FRF at point 1; (d) Measured data at point 2;
(e) Measured FRF at point 2
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As this is an important feature of most attached-shaker tests using
continuous sinusoidal, random or periodic excitation, it is worth
describing the point in some detail using the following example.

Suppose we are testing a plate and are trying to determine the
properties of one of its modes. In one measurement, where the
excitation and response are measured at the same point (a point
FRF) and in the immediate vicinity of a natural frequency, the
plate behaves very much like a single-degree-of-freedom oscillator
with an apparent mass of mp^ and an apparent stiffness of kp^ .
(Note that the natural frequency of this mode is given by
(kp^ lmp^12 .) Suppose also that the mass of the moving part of
the shaker and its connection to the structure (which is not part
of the structure proper) is ms . Now, let the force generated in the
shaker be fs(t) and the force actually applied to the structure (the
one we want to measure) be fp(t). If the acceleration of the
structure is denoted by x(t) , and we consider the vibration test to
be conducted at various sinusoidal frequencies, ©, then we may
write the simple relationship:

Z/WsCO-MO
Taking some typical data, we show in Fig. 3.4(b) the magnitudes
of the various quantities which are, or which could be, measured.
Also shown in Fig. 3.4(c) is the curve for the mppp quantity of
interest, in this case the accelerance (or inertance), XjFp , and it
is particularly interesting to see how the true natural frequency
(indicated when the accelerance reaches a maximum) is
considerably displaced from that suggested by the apparent
resonance when the response alone reaches a maximum.

We now move to a different point on the structure which, for
the same mode, will have different values for the apparent mass
and stiffness, and kp^ , although these two quantities will
necessarily stay in the same ratio (i.e. kpjmPi =kp2/mp2 = ®o)-
Another plot of the various quantities in this case is shown in
Figs. 3.4(d) and 3.4(e) from which it is clear that although the
FRF shows the natural frequency to be at the same value as
before, the system resonance is now at a different frequency to
that encountered in the first measurement, and this occurs
simply because of the different balance between the structure’s
apparent properties (which vary from point to point) and those of
the shaker (which remain the same throughout).

This example serves to illustrate the need for a direct measurement
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of the force applied to the structure as close to the surface as possible in
order to obtain a reliable and accurate indication of the excitation level,
and hence the mobility properties. It also illustrates a characteristic
which gives rise to some difficulties in making such measurements:
namely, that the (true) applied excitation force becomes very small in
the vicinity of the resonant frequency with the consequence that it is
particularly vulnerable to noise or distortion, see Fig. 3.4(b). It is clear
from comparison of Figs. 3.4(b) and (d) that the extent of the force ‘drop¬
out’ (as it is sometimes called) depends on the relative magnitudes of
the shaker mass, ms , and the apparent mass of the structural mode
being excited, mp , at the point of excitation, i. Whereas the first of
these quantities is fixed (by the choice of shaker), the second is variable
and depends directly upon how close the excitation point is to a node of
the mode of vibration in question. At an antinode, the apparent mass
and stiffness are both at their minimum values, while near a node they
increase to very large values (approaching infinity actually on the
node), all the time maintaining the same relative values, dictated by the
natural frequency, coo = (kp /mp )1/2 .

Generally, the larger the shaker, the greater the force which may be
generated for exciting the structure. However, besides the obvious
penalty of expense incurred by using too large an exciter, there is a
limitation imposed on the working frequency range. The above
discussion, which shows how the force generated in the exciter itself
finds its way out to the structure, applies only as long as the moving
parts of the shaker remain a rigid mass. Once the frequency of vibration
approaches and passes the first natural frequency of the shaker coil and
drive platform then there is a severe attenuation of the force which is
available for driving the test object and although some excitation is
possible above this critical frequency, it does impose a natural limit on
the useful working range of the device. Not surprisingly, this frequency
is lower for the larger shakers. Fig. 3.3 shows, approximately, the
relationship between maximum force level and upper frequency limit
for a typical range of shakers of this type.

3.4.4 Electrohydraulic Exciters
The next type of exciter to be considered is the hydraulic
(electrohydraulic, to be precise). In this device, the power amplification
to generate substantial forces is achieved through the use of hydraulics
and although more costly and complex than their electromagnetic
counterparts, these exciters do have one potentially significant
advantage. That is their ability to apply simultaneously a static load as
well as the dynamic vibratory load and this can be extremely useful
when testing structures or materials whose normal vibration
environment is combined with a major static load which may well
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change its dynamic properties or even its geometry. Without the facility
of applying both static and dynamic loads simultaneously, it is
necessary to make elaborate arrangements to provide the necessary
static forces and so in these cases hydraulic shakers have a distinct
advantage.

Another advantage which they may afford is the possibility of
providing a relatively long stroke, thereby permitting the excitation of
structures at large amplitudes — a facility not available on the
comparably-sized electromagnetic shakers. On the other hand,
hydraulic exciters tend to be limited in operational frequency range and
only very specialised ones permit measurements in the range above
1 kHz, whereas electromagnetic exciters can operate well into the 30-
50 kHz region, depending on their size. Also mentioned, as earlier,
hydraulic shakers are more complex and expensive, although they are
generally compact and lightweight compared with electromagnetic
devices.

The comments made above concerning the need to measure force at
the point of application to the structure also apply to this type of
exciter, although the relative magnitudes of the various parameters
involved will probably be quite different.

3.4.5 Attachment to the Structure
3.4.5.1 Push rods or stingers
For the above excitation devices, it is necessary to connect the driving
platform of the shaker to the structure, usually incorporating a force
transducer. There are one or two precautions which must be taken at
this stage in order to avoid the introduction of unwanted excitations or
the inadvertent modification of the structure. The first of these is
perhaps the most important because it is the least visible. If we return
to our definition of a single mobility or frequency response parameter,
H , we note that this is the ratio between the harmonic response at
point or DOF j caused by a single harmonic force applied in DOF k.
There is also a stipulation in the definition that this single force must
be the only excitation of the structure and it is this condition that we
must be at pains to satisfy in our test. Although it may seem that the
exciter is capable of applying a force in one direction only — it is
essentially a unidirectional device — there exists a problem on most
practical structures whose motion is generally complex and
multidirectional. The problem is that when pushed in one direction —
say, along the x axis — the structure responds not only in that same
direction but also in others, such as along the y and z axes and also in
the three rotation directions. Such motion is perfectly in order and
expected but it is possible that it can give rise to a secondary form of
excitation if the shaker is incorrectly attached to the structure. It is
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usual for the moving part of the shaker to be very mobile along the axis
of its drive but for it to be quite the opposite (i.e. very stiff) in the other
directions. Thus, if the structure wishes to respond in, say, a lateral
direction as well as in the line of action of the exciter, then the stiffness
of the exciter will cause resisting forces or moments to be generated
which are, in effect, exerted on the structure in the form of a secondary
excitation. The response transducers know nothing of this and they pick
up the total response, which is that caused not only by the intended
driving force (which is known) but also by the secondary and unknown
forces.

The solution is to attach the shaker to the structure through a drive
rod or similar connector which has the characteristic of being stiff in
one direction (that of the intended excitation) while at the same time
being relatively flexible in the other five directions. One such device is
illustrated in Fig. 3.5(a). Care must be taken not to over-compensate: if

Fig. 3.5 Exciter attachment and drive rod assembly,
(a) Practical example

the drive rod or ‘stinger’ is made too long, or too flexible, then it begins
to introduce the effects of its own resonances into the measurements
and these can be very difficult to extricate from the genuine data. For
most general structures, an exposed length of some 5-10 mm of 1 mm
diameter wire is found to be satisfactory, although by experience rather
than by formal analysis. Various alternative arrangements are
sometimes found, as illustrated in Figs. 3.5(b), (c), (d) and (e). Of these,
(b) is unsatisfactory while (c) and (d) are acceptable, if not ideal,
configurations. It is always necessary to check for the existence of an
internal resonance of the drive rod — either axially or in flexure — as
this can introduce spurious effects on the measured FRF properties.
Furthermore, in the case of an axial resonance, it will be found that
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Fig. 3.5 Exciter attachment and drive rod assembly.
(b) Unsatisfactory assembly with impedance head; (c) Acceptable
assembly; (d) Acceptable assembly; (e) Use of extension rod

very little excitation force will be delivered to the test structure at
frequencies above the first axial mode. (This should be noted as it also
applies to cases where a non-flexible extension rod is used to overcome
problems of access, Fig 3.5(e).)

3.4.5.2 Excitation of rotating shafts
Increasingly, the techniques of modal testing are applied to machines
which contain rotating components. Some of these tests involve
excitation of the stationary, or non-rotating components, and for these
all the above comments apply directly (except for the expectation of
reciprocity between two points). However, it is sometimes necessary to
excite the rotor itself and this can present extra difficulties. The
possibilities of using non-contacting excitation are discussed in more
detail in Section 3.4.8, but a simple application of the conventional
shaker-pushrod-transducer configuration is worth mentioning here.
Fig. 3.6 shows a modal test in progress on a rotating shaft, with the
excitation applied through a free-spinning bearing which also houses
the force and response transducers. Correction for the mass of the non-
rotating components is, of course, possible and the setup shown is
entirely feasible, always provided that access to the shaft is possible.

3.4.5.3 Support of shaker
Another consideration which concerns the shaker is the question of how
it should be supported, or mounted, in relation to the test structure. Of
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Fig. 3.6 Exciters applied to rotating shaft via auxiliary bearing

the many possibilities, some of which are illustrated in Fig. 3.7, two are
generally acceptable while others range from ‘possible-with-care’ to
unsatisfactory. The setup shown in Fig. 3.7(a) presents the most
satisfactory arrangement in which the shaker is fixed to ground while
the test structure is supported by a soft suspension. Fig. 3.7(b) shows an
alternative configuration in which the shaker itself is resiliently
supported. In this arrangement, the structure can be grounded or
ungrounded, but it may be necessary to add an additional inertia mass
to the shaker in order to generate sufficient excitation forces at low
frequencies. The particular problem which arises here is that the
reaction force causes a movement of the shaker body which, at low
frequencies, can be of large displacement. This, in turn, causes a
reduction in the force generation by the shaker so that its effectiveness
at driving the test structure is diminished.

In the cases shown in Figs. 3.7(a) and 3.7(b), we have sought to
ensure that the reaction force imposed on the shaker (equal and
opposite to that applied to the drive rod) is not transmitted to the test
structure. Fig. 3.7(c) shows a setup which does not meet that
requirement with the result that an invalid FRF measurement would be
obtained because the response measured at A would not be due solely to
the force applied at B (which has been measured), but would, in part, be
caused by the (unmeasured) force applied at C.
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Fig. 3.7 Various mounting arrangements for exciter.
(a) Ideal configuration; (b) Suspended shaker plus inertia mass;
(c) Unsatisfactory configuration; (d) Compromise configuration

The final example, Fig. 3.7(d), shows a compromise which is
sometimes necessary for practical reasons. In this case, it is essential to
check that the measured response at A is caused primarily by the
directly applied force at B and that it is not significantly influenced by
the transmission of the reaction on the shaker through its suspension at
C. This is achieved by ensuring that the frequency range for the
measurements is well above the suspension resonance of the shaker:
then, the reaction forces will be effectively attenuated by normal
vibration isolation principles.
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3.4.6 Hammer or Impactor Excitation
Another popular method of excitation is through use of an impactor or
hammer. Although this type of test places greater demands on the
analysis phase of the measurement process, it is a relatively simple
means of exciting the structure into vibration. The equipment consists
of no more than an impactor, usually with a set of different tips and
heads which serve to extend the frequency and force level ranges for
testing a variety of different structures. The useful range may also be
extended by using different sizes of impactor. Integral with the
impactor there is usually a load cell, or force transducer, which detects
the magnitude of the force felt by the impactor, and which is assumed to
be equal and opposite to that experienced by the structure. When
applied by hand, the impactor incorporates a handle — to form a
hammer (Fig. 3.8(a)). Otherwise, it can be applied with a suspension
arrangement, such as is shown in Fig. 3.8(b), or even as a spring-loaded
pistol device.

Fig. 3.8 Impactor and hammer details

Basically, the magnitude of the impact is determined by the mass of
the hammer head and the velocity with which it is moving when it hits
the structure. Often, the operator will control the velocity rather than
the force level itself, and so an appropriate way of adjusting the order of
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the force level is by varying the mass of the hammer head.
The frequency range which is effectively excited by this type of

device is controlled by the stiffness of the contacting surfaces and the
mass of the impactor head: there is a system resonance at a frequency
given by (contact stiffness / impactor mass)1/2 above which it is difficult
to deliver energy into the test structure. When the hammer tip impacts
the test structure, this will experience a force pulse which is
substantially that of a half-sine shape, as shown in Fig. 3.9(a). A pulse
of this type can be shown to have a frequency content of the form
illustrated in Fig. 3.9(b) which is essentially flat up to a certain
frequency (coc) and then of diminished and uncertain strength
thereafter. Clearly, a pulse of this type would be relatively ineffective at

FkjoU

Fig. 3.9 Typical impact force pulse and spectrum,
(a) Time history; (b) Frequency spectrum

exciting vibrations in the frequency range above <oc and so we need to
have some control over this parameter. It can be shown that there is a
direct relationship between the first cut-off frequency, <bc, and the
duration of the pulse, Tc , and that in order to raise the frequency range
it is necessary to induce a shorter pulse length. This, in turn, can be
seen to be related to the stiffness (not the hardness) of the contacting
surfaces and the mass of the impactor head. The stiffer the materials,
the shorter will be the duration of the pulse and the higher will be the
frequency range covered by the impact. Similarly, the lighter the
impactor mass the higher the effective frequency range. It is for this
purpose that a set of different hammer tips and heads are used to
permit the regulation of the frequency range to be encompassed.
Generally, as soft a tip as possible will be used in order to inject all the
input energy into the frequency range of interest: using a stiffer tip
than necessary will result in energy being input to vibrations outside
the range of interest at the expense of those inside that range.

On a different aspect, one of the difficulties of applying excitation
using a hammer is ensuring that each impact is essentially the same as
the previous ones, not so much in magnitude (as that is accommodated
in the force and response measurement process) as in position and
orientation relative to the normal to the surface. At the same time,
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multiple impacts or ‘hammer bounce’ must be avoided as these create
difficulties in the signal processing stage.

Yet another problem to be considered when using the hammer type
of excitation derives from the essentially transient nature of the
vibrations under which the measurements are being made. We shall
return to this characteristic later but here it is appropriate to mention
the possibility of inflicting an overload during the excitation pulse,
forcing the structure outside its elastic or linear range.

3.4.7 Step Relaxation
One variant on the hammer type of transient excitation is that referred
to as ‘step relaxation’ or ‘step release’. In this procedure, which is often
used for large civil engineering types of structure, a large steady load is
gradually applied to the structure under test, usually by means of a
steel cable or a rope, until the required level of initial deflection is
achieved — see Fig. 3.10. Alternatively, a steady load can be applied by

Fig. 3.10 Setup for excitation by step relaxation

other means, such as a dead weight applied to the structure. In order to
initiate the vibration which will be used to measure the structure’s
properties, the static load is suddenly released, by cutting the cable or
removing the steady load. The actual load should ideally be measured
(by a load cell in the cable) as must the ensuing free vibration response
so that the FRF can be derived in the usual way.

It will be realised that the relevant signal processing must be done
to convert time histories to frequency spectra so that the FRF can be
computed. It will be shown later that there is a requirement in this
process that the signals from both excitation and response must be
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effectively zero at both ends of the time record. This would appear to be
difficult in this case because both the initial load and the displacement
(although not the velocity or acceleration) are finite at t-0 and zero at
the end of the measurement, thereby introducing a discontinuity in the
pseudo periodic signals assumed by the FRF calculation. This problem
can be circumnavigated in one of two ways: either (a) the whole record
of the (slow) loading phase is included in the time histories of both input
force and resulting deflection or (b) the signals are differentiated so that
it is the rate of change of force that is used as input and velocity rather
than displacement (or acceleration rather than velocity) that is used to
record the response. In this way, the step change in the actual force and
deflection is converted to an impulsive signal which can be more readily
processed, as is done in hammer testing.

3.4.8 Non-Contact Magnetic Excitation
As mentioned previously, there are occasions where a non-contacting
excitation is desirable and this can sometimes be supplied by a simple
electromagnet positioned so as to apply a controllable force on a chosen
site on the test structure. Of course, the test object must be magnetic, or
carry a magnetic strip at the excitation point, and both it and the
magnet be grounded so that the d.c. or steady component of the
magnetic field does not simply draw the magnet and structure together,
otherwise the method is impossible. However, given the essential
features, it is possible to design an electromagnet with a small, localised
pole which can be placed close to the test structure and driven at the
desired frequency to generate an alternating force, see Fig. 3.11(a). The
force applied to the structure cannot be measured directly, but its
reaction on the body of the magnet can be measured with a conventional
force transducer, as shown in Fig. 3.11(b). Because of the current-
squared nature of the force generated by the magnet, it is found that a
sinusoidal input signal to the magnet results in a more complex periodic
force signal, as illustrated in Fig. 3.11(c). The harmonics thus generated
can be eliminated, if required, by the suitable generation of a multi¬
harmonic input signal. However, this is quite a complex task and not to
be undertaken unless absolutely essential.

The one application where non-contact electromagnetic excitation
has been developed to an advanced state is in the use of Active
Magnetic Bearings (AMBs) in some types of high-speed rotating
machinery. These devices have the dual role of (i) supporting the rotor
and (ii) injecting any desired dynamic loading to the rotor, perhaps to
compensate for an out-of-balance or to excite the rotor for vibration
measurements such as are of interest to us here. Such units are
sufficiently special-purpose that they will be not be considered further
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Fig.3.11 Excitation via non-contacting electromagnetic exciter,
(a) Exciter
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Force Measurement with Electro-magnets

(b)

Fig. 3.11 Excitation via non-contacting electromagnetic exciter.
(b) Reaction force measurement; (c) Typical excitation signal
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here but the interested reader is directed to [28] for further study and
consideration of these devices.

3.4.9 Base Excitation
There exist a class of vibration tests in which a structure is excited in
order to assess its vulnerability to some form of dynamic loading by
driving it at its ‘base’. Perhaps the simplest example of this is provided
by the case of a model building which is placed on a slip table or
bedplate to represent the ground which is then vibrated, laterally, to
simulate the excitation this structure might experience in practice, see
Fig. 3.12. This is the so-called ‘base-excitation’ type of test. Although,

2> Base Motion

Fig. 3.12 Basic excitation configuration

strictly, the structure is treated as a free-free structure with a loaded
boundary (the load provided by the mass of the slip table), the model
which is under investigation is, in effect, that of the structure with its
base grounded. In this type of test, only responses are measured — and
not the input force — and the question which arises is whether or not it
is possible to perform a modal test in this manner.

In fact, it is possible to carry out a limited modal test using the
procedure and data measured in such a base excitation test, although it
requires some additional information in the form of the mass
distribution of the model in order to extract normalised mode shapes as
well as the natural frequencies and damping factors. The analysis
procedure necessary to achieve this goal will be described in Chapter 5.

3.4.10 Excitation of Rotating Structures
We have already mentioned (in Section 3.4.5.3) the mechanics of
attaching a conventional exciter (shaker) to a rotating shaft on order to
provide the necessary excitation to this class of structure but it is
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appropriate here to extend those comments to consider this requirement
in more detail. The application of modal testing techniques to structures
and machines that contain rotating components constitutes a growing
area of interest, but it is one that is beset with several theoretical and
practical obstacles. Providing a suitable excitation is one of these and
one solution — using conventional exciters applied through an
additional bearing — has already been presented. A second alternative
has also been mentioned in passing, and that is to use non-contacting
magnetic exciters. There are two possibilities in this category: (i) to use
AMBs (active magnetic bearings) — where these are available — not
only to support the rotor but also to inject an excitation signal for the
purpose of stimulating vibrations that are then measured and used to
derive the desired response functions (although it is important to note
the complications that can arise when mixing quantities measured in
the rotating frame of reference (e.g. responses) with others measured in
the fixed frame of reference (e.g. excitation forces) — see Section 2.8), or
(ii) to use separate magnetic exciters of the type described above in
Section 3.4.8. In both cases, there is an inherent difficulty in accurately
determining the force which is applied to the moving structure. While
most AMBs have integral force-measuring devices, other magnetic
exciters do not and it is often necessary to infer the applied excitation
forces by measuring the reaction forces experienced by the support
structure, after making any appropriate compensation for the motion of
the magnet itself.

A third alternative, although one which does not readily lend itself
to measuring the FRF data required for modal analysis, is to use an
auxiliary rotating out-of-balance excitation device which is mounted co-
centrically with the rotating component of interest. Such a device can be
rotated synchronously or non-synchronously with the spinning test
structure and can deliver an excitation which comprises simultaneous
‘horizontal’ and ‘vertical’ harmonic forces that are in quadrature with
each other. As was shown in Section 2.8, the response to such out-of¬
balance excitations can be of interest in attempting to describe the
dynamic properties of such a structure, although it is difficult to extract
the FRFs necessary for a full modal analysis and modelling application.

A last possibility is to excite the rotating structure by hitting it with
a hammer or equivalent device. While this will undoubtedly have the
required effect of exciting vibration in the rotor, once again there will be
a difficulty in establishing exactly what the excitation force(s) is(are). In
particular, it will be clear that there will be a tangential force generated
and applied in addition to the radial one and, further, that it will be
very difficult to determine the magnitude of that component of
excitation. If it is significant (i.e. if it produces response levels which are
of similar magnitude to those from the primary (radial) excitation
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component (which is — presumably — measured by an internal force
transducer)), then it will present a major obstacle to the task of
determining FRF data because it will be impossible to extract the
response components due to each of the excitation components
individually, as is required for FRFs. Nevertheless, in view of the
practical difficulties of applying any of the other excitations to a
rotating structure, this simple option may be the most realistic option.

3.5 TRANSDUCERS AND AMPLIFIERS
3.5.1 General
The piezoelectric type of transducer is by far the most popular and
widely-used means of measuring the parameters of interest in modal
tests. Only in special circumstances are alternative types used and thus
we shall confine our discussion of transducers to these piezoelectric
devices.

Three types of piezoelectric transducer are available for mobility
measurements — force gauges, accelerometers and impedance heads
(impedance heads being simply a combination of force- and acceleration¬
sensitive elements in a single unit). The basic principle of operation
makes use of the fact that an element of piezoelectric material (either a
natural or synthetic crystal) generates an electrical charge across its
end faces when subjected to a mechanical stress. By suitable design,
such a crystal may be incorporated into a device which induces in it a
stress proportional to the physical quantity to be measured (i.e. force or
acceleration).

3.5.2 Force Transducers
The force transducer is the simplest type of piezoelectric transducer.
The transmitted force F (see Fig. 3.13(a)), or a known fraction of it, is
applied directly across the crystal, which thus generates a
corresponding charge, q, proportional to F. It is usual for the sensitive
crystals to be used in pairs, arranged so that the negative sides of both
are attached to the case, and the positive sides are in mutual contact at
their interface. This arrangement obviates the need to insulate one end
of the case from the other electrically. One important feature in the
design of force gauges is the relative stiffness (in the axial direction) of
the crystals and of the case. The fraction of F which is transmitted
through the crystals depends directly upon this ratio. In addition, there
exists the undesirable possibility of a cross sensitivity — i.e. an
electrical output when there is zero force F but, say, a transverse or
shear loading — and this is also influenced by the casing.

The force indicated by the charge output of the crystals will always
be slightly different from the force applied by the shaker, and also from
that transmitted to the structure. This is because a fraction of the force
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Fig. 3.13 Typical transducer basics.
(a) Force transducer; (b) Compression-type of piezoelectric
accelerometer; (c) Shear-type of accelerometer; (d) Simple
dynamic model for accelerometer

detected by the crystals will be used to move the small amount of
material between the crystals and the structure. The implications of
this effect are discussed later in a section on mass cancellation (Section
3.10), but suffice it to say here that for each force gauge, one end will
have a smaller mass than the other, and it is this (lighter) end which
should be connected to the structure under test.

3.5.3 Accelerometers
In an accelerometer, transduction is indirect and is achieved using an
auxiliary, or seismic, mass (see Fig. 3.13(b) and (c)). In this
configuration, the force exerted on the crystals is the inertia force of the
seismic mass (i.e. mz). Thus, so long as the body and the seismic mass
move together (i.e. z and x are identical), the output of the transducer
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will be proportional to the acceleration of its body (x ), and thus of the
structure to which it is attached. Analysis of a simple dynamical model
for this device (see Fig. 3.13(d)) shows that the ratio (x/z) is effectively
unity over a wide range of frequency from zero upwards until the first
resonant frequency of the transducer is approached. At 20 per cent of
this resonant frequency, the difference (or error in the ratio) x/z is
0.04, and at 33 per cent it has grown to 0.12. Thus, in order to define
the working range of an accelerometer, it is necessary to know its lowest
resonant frequency. However, this property will depend to some extent
upon the characteristics of the structure to which it is fixed, and indeed,
upon the fixture itself. Manufacturers’ data usually include a value for
the ‘mounted resonant frequency’ and this is the lowest natural
frequency of the seismic mass on the stiffness of the crystal when the
body is fixed to a rigid base. In the simple model above, this frequency
is given by bikini . This value must be regarded as an upper limit (and
thus not a conservative one) since in most applications the
accelerometer body is attached to something which is less than rigid
and so the transducer may possess a lower resonant frequency than
that quoted. In any event, the actual attachment to the test structure
must always be as rigid as possible and the manufacturers’ advice to
this end should be followed.

As with force transducers, there is a problem of cross- or transverse-
sensitivity of accelerometers which can result from imperfections in the
crystal geometry and from interaction through the casing. Modern
designs aim to minimise these effects and one configuration which tends
to be better in this respect is the shear type, a very simple arrangement
of which is illustrated in the sketch in Fig. 3.13(c).

3.5.4 Selection of Accelerometers
Accelerometer sensitivities vary between 1 and 10,000 pC/g. How is one
to choose the most suitable for any given application? In general, we
require as high a sensitivity as possible, but it must be noted that the
higher the sensitivity, the heavier and larger the transducer (thus
interfering more with the structure) and furthermore, the lower is the
transducer’s resonant frequency (and thus the maximum working
frequency). These considerations, together with any particular
environmental requirements, will usually narrow the choice to one
within a small range. For accurate measurements, especially on
complex structures (which are liable to vibrate simultaneously in
several directions), transducers with low transverse sensitivity (less
than 1-2 per cent) should be selected.

It must be realised that the addition of even a small transducer to
the structure imposes additional and unwanted forces on that structure.
The loads are basically the inertia forces and moments associated with
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the transducer’s motion along with the structure and although it may
be possible to compensate for some of these (see the section on Mass
Cancellation, below), it is not possible to account for them all and so,
especially at high frequencies and/or for small structures, care should
be taken to use the smallest transducer which will provide the
necessary signals. To this end, some of the newer transducers with
built-in amplifiers offer a considerable improvement.

3.5.5 Impedance Heads
It has been found convenient for some applications to combine both
force- and acceleration-measuring elements in a single housing, thereby
forming an impedance head. The main reason for using such a device is
to facilitate the measurement of both parameters at a single point. We
shall discuss the implications of this particular detail of experimental
technique later, and confine our attention here to the performance
characteristics of impedance heads. A typical, although not unique,
construction for an impedance head is shown in Fig. 3.14. It is desirable

Fig. 3.14 Impedance head

to have both elements as close as possible to the structure — the force
gauge in order to minimise the mass ‘below the crystal’, and the
accelerometer to ensure as high a base stiffness as possible. Clearly, a
design of the form shown must be a compromise and, accordingly, the
specifications of these heads should be carefully scrutinised. In
particular, the extent of any cross-coupling between the force and
acceleration elements should be established, since this can introduce
errors in certain frequency and/or mobility ranges.

3.5.6 Conditioning Amplifiers
One of the advantages of the piezoelectric transducer is that it is an
active device, and does not require a power supply in order to function.
However, this means that it cannot measure truly static quantities and
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so there is a low frequency limit below which measurements are not
practical. This limit is usually determined not simply by the properties
of the transducer itself, but also by those of the amplifiers which are
necessary to boost the very small electrical charge that is generated by
the crystals into a signal strong enough to be measured by the analyser.

Two types of amplifier are available for this role — voltage
amplifiers and charge amplifiers — and the essential characteristic for
either type is that it must have a very high input impedance. Detailed
comparisons of voltage and charge amplifiers are provided by
manufacturers’ literature. To summarise the main points: voltage
amplifiers tend to be simpler (electronically) and to have a better
signal/noise characteristic than do charge amplifiers, but they cannot be
used at such low frequencies as the latter and the overall gain, or
sensitivity, is affected by the length and properties of the transducer
cable whereas that for a charge amplifier is effectively independent of
the cable.

Increasingly, however, transducers are being constructed with
integral amplifiers which make use of microelectronics. These devices
require a low voltage power supply to be fed to the transducer but, in
return, offer marked advantages in terms of a lower sensitivity to cable
noise and fragility.

3.5.7 Attachment and location of Transducers
3.5.7.1 Attachment
The correct location and installation of transducers, especially
accelerometers, is most important. There are various means of fixing
the transducers to the surface of the test structure, some more
convenient than others. Some of these methods are illustrated in
Fig. 3.15 and range from a threaded stud, which requires the
appropriate modification of the test structure (not always possible),
through various adhesives in conjunction with a stud, to the use of a
wax, which is the simplest and easiest to use. These forms of
attachment become less reliable as the convenience improves, although
it is generally possible to define the Emits of the usefulness of each and
thus to select the correct one in any particular application. Also shown
on Fig. 3.15 are typical frequency limits for each type of attachment.
The particularly high frequency capability of the screwed stud
attachment can only be attained if the transducer is affixed exactly
normal to the structure surface so that there is a high stiffness contact
between the two components. If, for example, the axis of the tapped hole
is not normal to the surface, then the misalignment which results will
cause a poor contact region with a corresponding loss of stiffness and of
high-frequency range.

Another consideration when attaching the transducer is the extent



199

Cemented Thin layer Hand
stud of wax held

Fig. 3.15 Accelerometer attachment characteristics.
(a) Alternative attachment methods; (b) Frequency response
characteristics of different attachments
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of local stiffening which is introduced by its addition to the structure. If
this is being fixed to a relatively flexible plate-like surface, then there is
a distinct possibility that the local stiffness will be increased
considerably. The only real solution to this difficulty is to move the
transducer to another, more substantial, part of the structure.

3.5.7.2 Location
Another problem which may require the removal of the transducer to
another location is the possibility (or even probability) that it is
positioned at or very close to a node of one or more of the structure’s
modes. In this event, it will be very difficult to make an effective
measurement of that particular mode. However, if the measurement
points are already determined (for example, by matching those on a
finite element grid), then it is necessary to make what measurements
are possible, even if some of these are less than ideal.

Most modal tests require a point mobility measurement as one of
the measured frequency response functions, and this can present a
special problem which should be anticipated and avoided. Clearly, in
order to measure a true point FRF, both force and response transducers
should be at the same point on the structure and, equally clearly, this
may well be hard to achieve. Three possibilities exist, viz:

(i) use an impedance head (see Section 3.5.5);
(ii) place the force and acceleration transducers in line but on

opposite sides of the structure as shown in Fig. 3.16(a) (this is
only possible if the structure is locally thin);

(iii) place the accelerometer alongside, as close as possible to the force
gauge, as shown in Fig. 3.16(b).

Fig. 3.16 Measurement of point mobility.
(a) Ideal configuration; (b) Compromise configuration

(Note that there will be a phase difference of 180° between acceleration
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measurements made by (ii) and (iii) due to the inversion of the
accelerometer.)

It is the third alternative which presents the problem, since
particular care is required to ensure that the resulting measurements
really are representative of a point mobility. A practical example
illustrates the problem very clearly. Fig. 3.17 shows the result of
measuring the ‘point’ mobility on a model ship’s hull structure where
the third technique (iii) above was used. Fig. 3.17(a) illustrates a detail
of the measurement area, showing four possible sites for the
accelerometer. Fig. 3.17(b) presents four curves obtained by placing the
accelerometer at each of these four points in turn. It is immediately

(Hz)

Fig. 3.17 Examples of measurements of ‘point’ mobility.
(a) Test structure layout; (b) Measured FRF curves

apparent that two of the positions (B and D) result in very similar
curves, and it can be shown that both give a good indication of the
motion of the point of interest, X. The other two curves, corresponding
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to the accelerometer being placed at either A or C, show markedly
different response characteristics and indeed introduce enormous
errors. In this particular case, the trends of these results could be
explained by detailed examination of the local stiffness of the structure
near the measurement point, but it is possible that similar errors could
be incurred in other examples where such an explanation might be less
readily available.

One possible approach to reduce errors of this type is to average the
outputs of two accelerometers, such as A and C or B and D, but some
caution would be advisable when interpreting any results thus
obtained.

3.5.8 Laser Transducers
3.5.8.1 General
There is increasing use being made of optical and, in particular, of laser
transducers which have a major advantage in the non-intrusive nature
of their operation. While lasers have been used for holographic
measurements of vibration for some time, these are not ideally suited
for incorporation in a modal test because they require a major image
processing task to convert the detailed full-field measurement of the
structure’s vibration response to useful numerical data, and because
they generally do not readily provide adequate phase information as is
required for the post-measurement analysis phase. A popular version of
laser holography for mode shape (strictly, operating deflection shape)
visualisation is provided by the ESPI systems which give a real-time on¬
screen display of fringe patterns from which the vibration pattern can
be deduced. A second type of laser measurement system which has been
proposed and used in connection with modal testing is the double-pulse
laser holograph technique. This also requires post-measurement image
processing but has the advantage that phase information is fully
captured in the measurement.

However, the most readily usable laser transducers are those based
on the laser Doppler velocimeter (LDV) concept, and we shall describe
briefly the two types of LDV in current use: the standard single-point
version and the scanning version (or SLDV)

3.5.8.2 Laser Doppler velocimeter (LDV)
The basic LDV transducer is a device which is capable of detecting the
instantaneous velocity of the surface of a structure. The velocity
measurement is made by directing a beam of laser light at the target
point and measuring the Doppler-shifted wavelength of the reflected
light which is returned from the moving surface, using an
interferometer. The measurement made is of the velocity of the target
point along the line of the laser beam. The sketch in Fig. 3.18 shows the
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Fig. 3.18 Sketch of LDV measurement setup

basic layout of an LDV measurement system and it should be noted that
the main requirement is for a line of sight to the target measurement
point and a surface which is capable of reflecting the laser beam
adequately (this does not require a highly polished finish: and reflecting
materials are only necessary for very distant targets). There are
relatively few of these devices on the market at the present time and so
there is not a large range of specifications or performance to describe.
Characteristics for a typical device are:

• frequency range: 0-250kHz
• vibration velocity range: 0.01-20000 mm/s
• target distance: 0.2-30 m
• signal/noise: depends on target, type of scan and measurement

range
• sensitivity: 1-1000 mm/s/V

The main limitations of the LDV as a general-purpose response
transducer are (i) the line of sight requirement, and (ii) the problems
associated with speckle noise, a phenomenon which results in occasional
drop-outs, or null measurements, that have to be rejected from the data
set acquired in a measurement using this device. However, against
these disadvantages are distinct advantages for measurements which
have to be made in hostile environments, especially on surfaces which
have such high temperatures that conventional transducers cannot be
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employed. Successful measurements have been made using an LDV on
components with surface temperatures in excess of 1000C.

The practical details of using an LDV for accurate vibration
measurements as required for modal testing can be studied in
references such as [29,30], The considerations which must be made
include:

• correction for parallax and angle of incidence when the vibration is
not oriented exactly in the beam measurement direction;

• registration of the structure’s axes with respect to those of the LDV;
• determination of the actual angle of incidence, particularly if

mirrors are used for indirect line of sight measurement points.

A typical measurement made side by side with a conventional
accelerometer, using the same force transducer measurement in both
cases, is shown in Fig. 3.19, from which it can be seen that the two
transducers have similar performance in this case.

FRF Modulus Plot
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Fig. 3.19 Plot of FRFs using LDV and conventional accelerometer.

The conventional LDV can be directed towards its target site either
(i) manually, by positioning the device so that the measurement beam
falls on the desired measurement point, or (ii) by remote control of
positioning mirrors, a pair of which can be integrated into the laser
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housing as a means of directing the laser beam at a series of different
points without having to move the instrument. With this type of device,
it is possible to specify the target site(s) via a computer which then
directs the laser beam by suitable adjustment of the two mirrors, one
controlling the x-deflection of the beam and the other controlling the y-
clirection movement. Typical applications of this type of device include
(i) measuring at a large number of points comprising a mesh covering
the surface of a structure of interest and (ii) rapidly visiting and
measuring the response at a smaller number of carefully-selected sites,
determined for their efficacy in some subsequent application (see
Section 6.6 for a specific application of just this capability).

3.5.8.3 Scanning Laser Doppler Velocimeter (SLDV)
A natural extension of the capability described above for directing the
measurement beam in the LDV is to incorporate a dynamic feature in
the location mechanism. This means that we can exploit the ability to
locate the laser beam direction on demand by devising a scanning
process which moves the beam from one measurement site to the next
in a controlled way. In its simplest form, the scanning velocimeter
simply moves the beam to the first measurement point, makes a
measurement, and then moves to the next measurement point and
repeats the process. The faster this ‘stepping’ can be done, the shorter
will be the total measurement time. However, the speed of such a
procedure is limited by a number of factors: (i) those concerning the
time required to dwell at a measurement point in order to have
sufficient information to characterise its behaviour (that is a property of
the motion to be measured and not of the measurement system) and (ii)
those determined by the physical limitations inside the transducer, such
as the inertia of the mirrors which must be moved in order to bring
about the desired change of direction of the beam. In effect, the latter
group constitute a major barrier to faster measurements of this type,
especially at high frequencies of vibration, and the former at lower
frequencies.

However, there is a definite advantage to be gained by using the
scanning capability as an additional controllable variable in the
measurement process. Within the abovementioned constraints, it is
possible to control the mirror drives so that the measurement point
moves across the surface of the structure in a controlled and prescribed
continuous manner: a scan in the correct sense of the word and referred
to as a CSLDV device. In general, a line scan can be acquired much
faster this way than a series of discrete points. It can be seen that if the
structure is undergoing steady-state harmonic vibration, then as the
laser beam is scanned across its surface, the output signal from the
transducer will exhibit an amplitude-modulated harmonic signal, such
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as that shown in Fig. 3.20(a). If such a signal is subjected to a frequency
analysis, it will be found to possess several frequency components, not
simply the frequency of the steady vibration of the structure, which
reflect that vibration signal, the scan rate or speed, and the amplitude
variation along the scanned line (i.e. the operating deflection shape): see
Fig. 3.20(b). As the frequencies of vibration and scanning are known,
the measured signal can be used to extract valuable information about
the amplitude variation across the structure. This is a feature that we
shall be able to exploit in various applications, some of which are
discussed in Sections 3.11 and 3.14.

LDV Output Time Signal FFT of LDV Output

(a) (b)

Fig. 3.20 Signals form scanned LDV measurement.
(a) Time record; (b) Frequency spectrum of (a)

3.5.8.4 Tracking LDV
The latest prospect which is offered by the scanning LDV is that of
tracking a specific point, or points, on a moving structure and
performing continuous or scanned measurements on such a structure
while it is moving as well as vibrating. The two most immediate
applications of such a device are (i) rotating machines, where it may be
desirable to measure at selected points on a rotating disc, or other
component, and (ii) vehicles, where it may be desired to make
measurements continuously during the motion of the vehicle. Other
applications, such as windscreen wipers, belts, etc. clearly show the
demand for such a measurement device, if it can be developed. It is the
first of these applications that is the most advanced at the time of
writing. Further details of these possibilities can be found in reference
[30], which describes vibration measurements made on the surface of a
rotating disc using an SLDV whose point of measurement was
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continuously controlled by the signal from an encoder on the rotating
shaft carrying the disc. Measurements were made during synchronous
scanning (with the measurement point ‘locked’ on to a prescribed point
on the disc), and during non-synchronous scanning, where the
measurement point was scanned continuously around the spinning disc
so as to address all points at a given radius (radii) during the
continuous motion of the rotor. One problem is that, unless the
measurement beam is exactly perpendicular to the direction of
(continuous) motion, it detects a proportion of this, which may be very
large, in addition to the required vibration velocity. While these are
advanced applications at the time of writing, it is likely that they will
become much more widely employed in the near future and so the
interested reader is encouraged to scour the relevant literature for
developments of both hardware, software and applications of this
interesting branch of the technology.

3.6 ANALYSERS
3.6.1 Role of the Analyser
Each FRF measurement system incorporates an analyser in order to
measure the specific parameters of interest — force and response levels.
In principle, each analyser is a form of voltmeter although the signal
processing required to extract the necessary information concerning
magnitude and phase of each parameter leads to very complex and
sophisticated devices. Different measurement systems employ different
types of analyser. There are two of these in widespread use:

• frequency response analysers;
• spectrum analysers.

Nowadays, these are digital devices, although some analogue units may
still be in use. In all cases, the data are supplied to the analyser in
analogue form but with a digital instrument the first stage of the signal
processing is analogue-to-digital (A-D) conversion so that the quantities
to be processed are then in the form of a string of discrete values, as
opposed to a continuous function. The subsequent processing stages are
then performed digitally, as in a computer, using a variety of special¬
purpose routines which are usually hard-wired into the analyser in the
form of a microprocessor for maximum speed of execution.

It is appropriate to describe briefly each of these types of device.

3.6.2 Frequency Response Analyser (FRA)
The frequency response analyser (FRA) is a development of the tracking
filter concept in that it also is used with sinusoidal excitation. However,
in these devices, the heart of the processing is performed digitally.
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The source or ‘command’ signal — the sine-wave at the desired
frequency — is first generated digitally within the analyser and then
output as an analogue signal via a D-A converter. Within the same
device, the two (or more) input signals (from the force and response
transducers) are digitised via an A-D converter and then, one at a time,
correlated numerically with the outgoing signal in such a way that all
the components of each incoming signal other than that at exactly the
frequency of the command signal are eliminated. This is, in effect, a
digital filtering process and, when completed, permits the accurate
measurement of the component of the transducer signals at the current
frequency of interest. As with all such instruments, the accuracy of
the measurements can be controlled to a large extent by the time spent
in analysis. In the FRA, it is possible to improve the non-synchronous
component rejection simply by performing the correlation (or filtering)
over a longer period of time. Sometimes, this is quantified by the
number of cycles (of the command signal) during which the computation
takes place. Fig. 3.21 illustrates the type of dependence of rejection
effectiveness versus integration time.

Fig. 3.21 Typical FRA filtering capability
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3.6.3 Spectrum Analysers
The spectrum analyser (or frequency analyser, as it is sometimes called)
is a quite different type of instrument to the FRA device described
above. Whereas the FRA was concerned with extracting just one
frequency component at a time, the spectrum analyser seeks to measure
simultaneously all the frequency components present in a complex
time-varying signal. Its output consists of a spectrum, usually a discrete
one containing a finite number of components, describing the relative
magnitudes of a whole range of frequencies present in the signal.
Perhaps the simplest way to visualise the spectrum analyser is as a set
of FRA units, each tuned to a different frequency and working
simultaneously.

The current generation of digital spectrum analysers available have
proven to be the workhorse of signal processing used in modal testing
for the past two to three decades. The digital spectrum analyser (or
‘Digital Fourier Analyser’ or ‘Digital Fourier Transform Analyser’) is
capable of computing a wide range of properties of incoming signals,
including those required for FRF measurements, all of which are based
on the Discrete Fourier Transform. In order to appreciate how best to
use analysers of this type, it is necessary to understand the basics of
their operation and we shall devote the next section to a study of some
of the main features. However, it should be remembered that our
objective in so doing is specifically to facilitate our use of the analyser to
measure the quantities required for mobility measurements. These are
listed in Chapter 2; in Section 2.11, equations (2.138), (2.143) and
(2.154).

As a postscript here, it should be noted that, increasingly, the
software for digital signal processing is becoming widely available in
PCs and other computers and so special hard-wired analysers are less
essential than a few years ago. While the do-it-yourself software option
may appear attractive, and much cheaper than the purchase of a
special-purpose instrument, care is required to ensure that all the
functions provided by the latter devices are included in the simpler
package. Tasks such as the anti-aliasing filtering which is so important
to reduce aliasing errors must still be undertaken and this can only be
effectively done prior to the A-D conversion, which means before the
data enter the computer.

3.7 DIGITAL SIGNAL PROCESSING
3.7.1 Objective
The tasks of the spectrum analyser which concern us here are those of
estimating the Fourier Transforms or Spectral Densities of signals
which are supplied as inputs.

The basic theory of Fourier analysis is presented in Appendix 5 but
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it is appropriate here to relate the two most relevant versions of the
fundamental Fourier transformation between the time and frequency
domains. In its simplest form, this states that a function x(t) , periodic
in time T, can be written as an infinite series:

(3.1a)

where an and btl can be computed from knowledge of x(t) via the
relationships (3.1b):

(3.1b)

In the situation where x(t') is discretised and of finite duration, so that
it is defined only at a set of N particular values of time ( ; k =1, N ), we
can write a finite Fourier series:

xfe(=Xife))= (3.1c)

The coefficients an , bn are the Fourier or Spectral coefficients for the
function x(t) and they are often displayed in modulus (and phase) form,
cn(=Xn) = (an+bn)i!2 (and This is the form of
the Fourier transform with which we are concerned throughout the
practical application of the theory used in this subject.

The signals (accelerometer or force transducer outputs) originate in
the time domain and the desired spectral properties are in the
frequency domain. Fig. 3.22 shows the various types of time history
encountered, their Fourier Series or Transforms or Spectral Density,
and the approximate digitised (or discrete) approximations used and
produced by a Discrete Fourier Transform (DFT) analysis.

3.7.2 Basics of the DFT
In each case, the input signal is digitised (by an A-D converter) and
recorded as a set of N discrete values, evenly spaced in the period T
during which the measurement is made. Then, assuming that the
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sample in time T is periodic, a Finite Fourier Series (or Transform) is
computed according to (3.1c) above as an estimate to the required
Fourier Transform. There is a basic relationship between the sample
length T, the number of discrete values N, the sampling (or digitising)
rate cos and the range and resolution of the frequency spectrum ( comax >
Aco). The range of the spectrum is 0-<nmax (“max is the Nyquist
frequency) and the resolution of lines in the spectrum is Aco , where

Aco = cos _ 2n

(3.2)

(3.3)

As the size of the transform (A) is generally fixed for a given analyser
(and is usually, though not always, a power of 2: 512, 1024 etc.), the
frequency range covered and the resolution of the spectral lines is
determined solely by the time length of each sample. This fact
introduces constraints on the use of these analysers, as will be seen
later.

The basic equation which is solved in order to determine the
spectral composition derives from that given in Appendix 5:

*1
x2

• *3

0.5
0.5
0.5

cos^/T1)..
cos^n/T)..
cos(67t/T)..

a0
ai

or — [pR} (3.4)

XN. 0.5 cos^N-k/T)

Thus, we use to determine the unknown spectral or
Fourier coefficients contained in {an}. Much of the effort in optimising
the calculation of spectral analysis is effectively devoted to equation
(3.4) and the most widely used algorithm is the ‘Fast Fourier
Transform’ developed by Cooley and Tukey in the 1960s (Reference
[29]). That method requires N to be an integral power of 2 and the value
usually taken is between 256 and 4096.

There are a number of features of digital Fourier analysis which, if
not properly treated, can give rise to erroneous results. These are
generally the result of the discretisation approximation and of the need
to limit the length of the time history. In the following sections we shall
discuss the specific features of aliasing, leakage, windowing,
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filtering, zooming and averaging.

3.7.3 Aliasing
There is a problem associated with digital spectral analysis known as
‘aliasing’ and this results from the discretisation of the originally
continuous time history (Fig. 3.22). With this discretisation process, the
existence of very high frequencies in the original signal may well be
misinterpreted if the sampling rate is too slow. In fact, such high
frequencies will appear as low frequencies or, rather, will be
indistinguishable from genuine low frequency components. In Fig. 3.23,
it can be seen that digitising a ‘low’ frequency signal (Fig. 3.23(a))
produces exactly the same set of discrete values as result from the same
process applied to a higher frequency signal, (Fig. 3.23(b)).

Fig. 3.23 The phenomenon of aliasing.
(a) Low-frequency signal; (b) High-frequency signal

Thus, a signal of frequency co and one of (o)s— co) are
indistinguishable when represented as a discretised time history and
this fact causes a distortion of the spectrum measured via the DFT,
even when that is computed exactly.

A signal which has a true frequency content shown in Fig. 3.24(a)
will appear in the DFT as the distorted form shown in Fig. 3.24(b). Note
from Section 3.7.2 that the highest frequency which can be included in
the spectrum (or transform) is (cos/2) and so the indicated spectrum
should stop at that frequency, irrespective of the number of discrete
values. (It should be noted that sometimes the spectrum is drawn over a
wider frequency range than 0-(ms/2). However, when this is done, the
spectrum beyond (cos/2) is simply a reflection of that between O-(cos/2)
and contains exactly the same information, but falsely labelled.) The
distortion evident in Fig. 3.24(b) towards the upper end of the valid
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frequency range can be explained by the fact that the part of the signal
which has frequency components above (cos/2) will appear reflected or
‘aliased’ in the range 0- (<bs 12) . Thus we see a Fourier Transform
composed as illustrated in Fig. 3.24(b).

Fig. 3.24 Alias distortion of spectrum by discrete Fourier transform
(DFT).
(a) True spectrum of signal; (b) Indicated spectrum from DFT

Fig. 3.25 Anti-aliasing filter process
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The solution to the problem is to use an anti-aliasing filter which
subjects the original time signal to a low-pass, sharp cut-off filter with a
characteristic of the form shown in Fig. 3.25. This has the result of
submitting a modified time history to the analyser. Because the filters
used are inevitably less than perfect, and have a finite cut-off rate, it
remains necessary to reject the spectral measurements in a frequency
range approaching the Nyquist frequency, (cos/2). Typical values for
that rejected range vary from 0.5-1.0 (®s/2) for a simple filter to 0.8-
1.0 (cos /2) for a more advanced filter design. It is for this reason that a
2048-point transform does not result in the complete 1024-line
spectrum being given on the analyser display: typically, only the first
800 lines will be shown as the higher ones are liable to be contaminated
by the imperfect anti-aliasing.

It is essential that the correct anti-aliasing precautions are taken
and so they are usually provided as a non-optional feature of the
analyser.

3.7.4 Leakage
Leakage is a problem which is a direct consequence of the need to take
only a finite length of time history coupled with the assumption of
periodicity. The problem is best illustrated by the two examples shown

Fig. 3.26 Sample length and leakage of spectrum.
(a) ‘Ideal’ signal; (b) ‘Awkward’ signal

frequencies are subjected to the same analysis process. In the first case,
(a), the signal is perfectly periodic in the time window, T, and the
resulting spectrum is quite simply a single line — at the frequency of
the sine wave. In the second case, (b), the periodicity assumption is not
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strictly valid and there is a discontinuity implied at each end of the
sample. As a result, the spectrum produced for this case does not
indicate the single frequency which the original time signal possessed
— indeed, that frequency is not actually represented in the specific lines
of the spectrum. Energy has ‘leaked’ into a number of the spectral lines
close to the true frequency and the spectrum is spread over several lines
or windows. The two examples above represent a best case and a worst
case although the problems become most acute when the signal
frequencies are lower.

Leakage is a serious problem in many applications of digital signal
processing, including FRF measurement, and ways of avoiding or
minimising its effects are important refinements to our techniques.
There are various possibilities, which include:

• changing the duration of the measurement sample length to match
any underlying periodicity in the signal (i.e. by changing T in the
example in Fig. 3.26(b) so as to ‘capture’ an exact number of cycles of
the (obviously sinusoidal) signal. Although such a solution can
remove the leakage effect altogether, it can only do so if the signal
being analysed is periodic — which is not always the case — and if
the period of that signal can be determined — which is often
difficult and, anyway, may well have been the objective of the
analysis in the first place;

• increasing the duration of the measurement period, T, so that the
separation between the spectral lines — the frequency ‘resolution’ —
is finer (this does not remove but does reduce the severity of the
leakage effect);

• adding zeroes to the end of the measured sample (‘zero padding’),
thereby partially achieving the preceding result but without
requiring more data; or

• by modifying the signal sample obtained in such a way as to reduce
the severity of the leakage effect. This process is referred to as
‘windowing’ and is widely employed in signal processing.

3.7.5 Windowing
In many situations, the most practical solution to the leakage problem
involves the use of windowing and there are a range of different
windows for different classes of problem.

Windowing involves the imposition of a prescribed profile on the
time signal prior to performing the Fourier transform and the profiles
or ‘windows’ are generally depicted as a time function, w(t) , as shown in
Fig. 3.27. The analysed signal is x'(t)= . The result of using a
window is seen in the third column of Fig. 3.27 and, for the case
previously shown in Fig. 3.26(b), this produces the improved spectrum
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shown in Fig. 3.28. The Hanning (b) or Cosine Taper (c) windows are
typically used for continuous signals, such as are produced by steady
periodic or random vibration, while the Exponential window (d) is used
for transient vibration applications where much of the important
information is concentrated in the initial part of the time record and

(t)

Fig. 3.27 Different types of window.
(a) Boxcar; (b) Hanning; (c) Cosine-taper; (d) Exponential

|Xnl

Fig. 3.28 Effect of Hanning window on discrete Fourier transform

would thus be suppressed by either of the above choices.
In all cases, a rescaling is required to compensate for the

attenuation of the signals by the application of the window. However, if
both response and excitation signals are subjected to the same window,
and the results are used only to compute an FRF ratio, then the
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rescaling is not necessary. Care should be taken in some cases,
especially with transient tests, as the two signals may be treated
differently, using different windows on the two channels.

We have shown the effect of applying a window to the time domain
signal which can benefit from such modification prior to undergoing its
Fourier transformation calculation. It is possible, also, to witness the
effect of applying a window by examining the same process in the
frequency domain and, although this is more complex than the direct
multiplication we have just made in the time domain, it serves a useful
role to make such a parallel study.

It is a simple matter to make a Fourier transform of the time
function which defines the window, w(t) , and to define the
corresponding frequency-domain function, W(<b) . Of course, because
w(t) is continuous, its spectrum, W(o) , will also be continuous. For the
specific case of the Hanning window (in which
w(t) = 0.5(1- cos(27ti/71))), we obtain the spectrum shown in Fig. 3.29.
Similar spectra can be obtained for the other common windows used,
and these are also shown in Fig. 3.29.

In seeking to define the spectrum of a signal after windowing, it
must be noted that this cannot be obtained simply by multiplying the
original signal spectrum by the spectrum of the window. Instead, it is
necessary to perform a convolution of these two frequency-domain
quantities so that the required output spectrum, X'(<o) , is expressed in
terms of the input spectrum, X(m) , and that of the window, W(co) , by
the relationship:

XX<o) = X(co)*Wo) (3-5)

where * denotes the convolution process. However, it is appropriate to
note again, at the end of this section, that a signal conditioning process
which involves multiplication in the time domain (such as windowing)
requires convolution to carry out the same process in the frequency
domain. We shall see in the next section how the reverse is also true: a
process which requires simple multiplication of spectra demands
convolution in the time domain in order to define the modified signal’s
time-history.

3.7.6 Filtering
There is another signal conditioning process which has a direct parallel
with windowing, and that is the process of filtering. In fact, we have
already described one type of filter in our discussion of the aliasing
problem and seen there that a filter is rather like a window, except that
it is applied in the frequency domain rather than the time domain. We
saw in Fig. 3.25 how the spectrum of a modified signal was obtained by
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Frequency Spectra of Exponential window

Frequency [Hz]

(c)

Fig.3.29 Frequency spectra of Hanning and other windows.
(a) Hanning; (b) Boxcar; (c) Exponential

the simple process of multiplying the original signal spectrum by the
frequency characteristic of the filter. This filter is of the low-pass type
and other common filters are:

• high-pass
• band-limited
• narrow-band
* notch
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High-Pass Filter in Frequency Domain

Frequency Ratio

(a)
Band-Limited Filter in Frequency Domain

(b)

Fig. 3.30 Common filters — frequency and time domain characteristics.
(a) High-pass; (b) Band-limited

all of which are illustrated in Fig. 3.30. In practice, all filters will have a
finite frequency range over which they function as designed and,
although shown as having clear cut-off frequencies, will exhibit roll-off
features near these critical frequency regions, the clarity of which
determines their quality.

In the same way that the time-domain characteristic of a window
could be transformed to the frequency domain, so also can a filter’s
characteristic be represented in the time domain, and this is done in the
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Narrow-Band Filter in Frequency Domain
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Fig.3.30 Common filters — frequency and time domain characteristics,
(c) Narrow-band; (d) Notch

second part of Fig. 3.30. In order to derive expressions for the time
domain descriptions of signals which have been filtered, it is necessary
to use the convolution procedure (see Appendix 5) so that, in this case of
filtering, we can write:

X'(®) = X(a>)>((o)
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and

x\t) = x(t)*w(t)

However, it is not usual to want to perform calculations in this way as
the direct frequency formula is quite convenient.

3.7.7 Improving Resolution
So far, we have been concerned with the basic DFT which is often found
to have limitations of inadequate frequency resolution, especially at the
lower end of the frequency range and especially for lightly-damped
systems. This problem arises because of the constraints imposed by the
limited number of discrete points available (N), the maximum
frequency range to be covered and/or the length of time sample
available or necessary to provide good data. We shall now address
possible actions to improve the resolution available to us and to the
precision with which we can make the required spectral analysis of our
data.

3.7.7.1 Increasing transform size
An immediate solution to this problem would be to use a larger
transform but, although giving finer frequency resolution around the
regions of interest, this carries the penalty of providing more
information than is required and, anyway, the size of transform is not
always selectable. Until quite recently, the time and storage
requirements to perform the DFT were a limiting factor in deciding the
size of the transform but, nowadays, computer power is such that this is
less and less of a consideration. There comes a point, however, where
increasing the fineness of the spectrum overall is counterproductive
(there are too many data points to handle) and transform sizes of the
order of 2000 to 8000 are standard (that means 1000 to 4000 frequency
lines, not all of which may be presented).

3.7.7.2 Zero padding
While a simple expansion of the transform size is indeed a way of
increasing the spectral resolution, it carries with it the requirement
that a correspondingly longer sample of signal must be available (to
maintain the same overall frequency range, but to increase resolution
by n times, demands a signal sample of n times the duration).
Sometimes, this is simply not feasible, for a variety of reasons, and in
these cases it may be possible to achieve the same resolution increase
by adding a series of zeroes to the short sample of actual signal so as to
create a new sample which is longer than the original measurement and
which thus provides the desired finer resolution. Care must be taken in
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such a procedure because, in keeping with the fact that no additional
data have been provided, the apparently greater detail in the spectrum
is achieved at a price. It is not a genuinely finer spectrum; rather, it is
the coarser spectrum which is available from the actual measured data
interpolated and smoothed by the extension of the analysed record.

An example of the effects, and potential dangers, of using zero
padding is shown in Fig. 3.31. In the first case, (a), a standard DFT is

0.45,

0.4I
0.35|

0.3 J
0.25 1

o.
E 0.2r

0.15

0 1

0,05

0s—
400

(a)

Fig. 3.31 Results using zero padding to improve resolution.
(a) DFT of data between 0 and T\ ; (b) DFT of data padded to
?2 ; (c) DFT of full record 0 to T2
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shown for the sample of measured data between 0 and . In the second
plot, (b), a more detailed transform is performed by sampling at the
same rate but on the longer modified sample, of duration T2 produced
by adding a string of zeros to the original measured sample. The finer
resolution around the frequency of interest is clearly seen. In the third
plot (c), we show the result of performing a larger transform on a
complete record of length T2 , and this reveals the presence of two
frequency components in the signal; a fact which was not evident from
either of the first two analyses.

3.7.7.3 Zoom
The common solution to the need for finer frequency resolution is to
‘zoom in’ on the frequency range of interest and to concentrate all the
spectral lines (400 or 800 etc.) into a narrow band between ®min and
“max (instead of between 0 and ®max , as hitherto). There are various
ways of achieving this result but perhaps the one which is easiest to
understand physically is that which uses a frequency shifting process
coupled with a controlled aliasing device.

Suppose the signal to be analysed, x(i) , has a spectrum, X(co) , of
the type shown in Fig. 3.32(a) and that we are interested in a detailed
(zoom) analysis around the second peak — between oq and «2 • we
apply a band-pass filter to the signal, as shown in Fig. 3.32(b), and

Fig. 3.32 Controlled aliasing for frequency zoom.
(a) Spectrum of signal; (b) Band-pass filter

perform a DFT between 0 and (©2-o>i), then because of the aliasing
phenomenon described earlier, the frequency components between aq



225

and co2 will appear aliased in the analysis range 0 to (see
Fig. 3.33) with the advantage of a finer resolution. In. the example
shown here, the resolution is four times finer than in the original
baseband analysis.

r\ , A.
0 ( f2-f, )

Fig. 3.33 Effective frequency translation for zoom

When using zoom to measure FRF in a narrow frequency range, it is
important to ensure that there is as little vibration energy as possible
outside the frequency range of interest. This means that wherever
possible the excitation supplied to drive the structure should be band¬
limited to the analysis range; a feature not provided automatically on
some analysers.

This is not the only way of achieving a zoom measurement, but it
serves to illustrate the concept. Other methods are based on effectively
shifting the frequency origin of the spectrum by multiplying the original
time history by a cos^jt) function and then filtering out the higher of
the two components thus produced. For example, suppose the signal to
be analysed is:

x(i) = Asin(cof)

Multiplying this by cos(o>it) yields:

x\t)= Asin cot .cos t = — (sin (co -co^i + sin (co + aq)t)
2

(3.6)

and if we then filter out the second component we arc; left with the
original signal translated down the frequency range by co^ . The modified
signal is then analysed in the range 0 to (co2-co1) yielding a zoom
measurement of the original signal between cq and <o2 . In this method,
it is clear that sample times are multiplied by the zoom magnification
factor (of 4 times, or 10 times, etc.), but that sampling is carried out at
the slower rate (also 4 times, or 10 times, etc.) dictated by the new
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effective frequency range.
There are, as mentioned earlier, other methods of zoom but this is

the one most often used in standard modal testing applications. The
other one worth mentioning is the so-called ‘non-destructive zoom’
method. This is a method which requires the capacity to store all the
data obtained when the original signal is discretised at the original rate
but over the longer time window to be used to gain the finer resolution.
(If this were to be a zoom factor of 10 times, then this would represent
an increase of 10 times the quantity of data acquired in a standard
baseband measurement.) In this method, the full set of data points are
assembled into smaller segments, each the length of a standard sample,
by combining the 1st, 11th, 21st, etc. points (or the 3rd, 13th, 23rd, ...).
Each of these constructed segments represents a small frequency band
within the overall range (in fact, 10 per cent of it) and a direct DFT of
each one reveals the spectrum in that limited frequency band but with a
resolution which is 10 times finer than before. Details of this method,
and other aspects of the DFT in general, can be found in [32],

3.7.8 Averaging
3.7.8.1 Need for averaging
We now turn our attention to another feature of digital spectral
analysis that concerns the particular requirements for processing
random signals. (So far, we have dealt with deterministic data.) When
analysing random vibration signals, it is not sufficient to compute
Fourier transforms — strictly, these do not exist for a random process
— and we must instead obtain estimates for the spectral densities and
correlation functions which are used to characterise this type of signal.
Although these properties are computed from the Fourier transforms,
there are additional considerations concerning their accuracy and
statistical reliability which must be given due attention. Generally, it is
necessary to perform an averaging process, involving several individual
time records, or samples, before a result is obtained which can be used
with confidence. The two major considerations which determine the
number of averages required are:

• the statistical reliability; and
• the removal of spurious random noise from the signals.

Detailed guidance on the use of DFT analysers for valid random signal
processing may be obtained from specialist texts, such as Newland
(Reference [33]) and Bendat and Piersol (Reference [34]). However, an
indication of the requirements from a statistical standpoint may be
provided by the ‘statistical degrees of freedom’ (k) which is provided by
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k = 2BTt

where B = frequency bandwidth
Tt = total time encompassing all data
(= mT for m samples each of T duration)

As a guide, this quantity k should be a minimum of 10 (in which case
there is an 80 per cent probability that the estimated spectrum lies
between 0.5 and 1.5 times the true value) and should approach 100 for
reasonably reliable estimates (i.e. an 80 per cent probability that the
measured value is within 18 per cent of the true value).

3.7.8.2 Types of average
There are several options which can be selected when setting an
analyser into average mode: peak hold, exponential, linear, and so on.
Each simply introduces a different weighting to the different samples in
computing the relevant mean values.

3.7.8.3 Overlap averaging
The reference above to m samples, each of duration T , implies that
these are mutually exclusive, as shown by Fig. 3.34(a). However, the
computing capabilities of modern analysers mean that the DFT is
calculated in an extremely short time and, consequently, that a new
transform could be computed rather sooner than a new complete sample
of data has been collected. In this case, it is sometimes convenient to
perform a second transform as soon as possible, using the most recent
N data points, even though some of these may have been used in the
previous transform. This procedure is depicted in Fig. 3.34(b) and it is
clear that 100 averages performed in this way cannot have the same
statistical properties as would 100 completely independent samples ,

Nevertheless, the procedure is more effective than if all the data
points are used only once and it manifests this extra processing by
producing smoother spectra than would be obtained if each data sample
were used only once.

3.8 USE OF DIFFERENT EXCITATION SIGNALS
It is now appropriate to discuss the different types of excitation signals
which can be used to drive the test structure so that measurements can
be made of its response characteristics. There are, in fact, three
different classes of signal used, and these are:

• periodic
• transient
• random
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Fig. 3.34 Different interpretations of multi-sample averaging
(a) Sequential; (b) Overlap

These are widely used for modal testing excitation signals, specific
types of which include:

periodic
- stepped sine
- slow sine sweep
- periodic
- pseudo-random
- periodic random

transient
- burst sine
- burst random
- chirp
- impulse

random
- (true) random
- white noise
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- narrow-band random

All of these are in widespread use, each having its own particular
merits and drawbacks, and examples of each are shown in Fig. 3.35.

Fig. 3.35 Examples of different signal types used for excitation.
(a) Periodic — sinusoidal; (b) Periodic — ordered; (c) Periodic —

pseudo-random; (d) Random
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Fig. 3.35 Examples of different signal types used for excitation,
(e) Transient — impulsive; (f) Transient — burst

3.8.1 Stepped-Sine Testing
Stepped-sine (or step-sine) testing is the name given to the classical
method of measuring a frequency response function in which the
command signal supplied to the exciter is a discrete sinusoid with a
fixed amplitude and frequency. Strictly speaking, sine excitation is
simply a particular type of periodic signal, but it has several singular
features, and uses different analysis equipment to the other periodic
signals, so it is appropriate to treat it separately.

In order to encompass a frequency range of interest, the command
signal frequency is stepped from one discrete value to another in such a
way as to provide the necessary density of points on the frequency
response plot. Invariably driving through an attached shaker, the
excitation force and response(s) are measured, usually with a Frequency
Response Analyser. In this technique, it is necessary to ensure that
steady-state conditions have been attained before the measurements
are made and this entails delaying the start of the measurement
process for a short while after a new frequency has been selected as
there will be a transient response as well as the steady part. The extent
of the unwanted transient response will depend on:

(i) the proximity of the excitation frequency to a natural frequency of
the structure;

(ii) the abruptness of the changeover from the previous command
signal to the new one; and
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(iii) the lightness of the damping of the nearby structural modes.

The more pronounced each of these features is, the more serious is the
transient effect and the longer must be the delay before measurements
are made. In practice, it is only in the immediate vicinity of a lightly
damped resonance that the necessary delay becomes significant when
compared with the actual measurement time and at this condition,
extra attention is usually required anyway because there is a tendency
for the force signal to become very small and to require long
measurement times in order to extract an accurate estimate of its true
level.

One of the advantageous features of the discrete or stepped-sine test
method is the facility of taking measurements just where and as they
are required. For example, the typical FRF curve has large regions of
relatively slow changes of level with frequency (away from resonances
and antiresonances) and in these regions it is sufficient to take
measurements at relatively widely spaced frequency points. By
contrast, near the resonance and antiresonant frequencies, the curve
exhibits much more rapid changes and it is more appropriate to take
measurements at more closely spaced frequencies. It is also more
efficient to use less delay and measurement time away from these
critical regions, partly because there are less problems there but also
because these data are less likely to be required with great accuracy for
the modal analysis phases later on. Thus, we have the possibility of
optimising the measurement process when using discrete sinusoidal
excitation, especially if the whole measurement is under the control of a
computer or processor, as is now generally the case. Fig. 3.36 shows a
typical FRF curve measured using discrete sine excitation, in which two
sweeps have been made through the range of interest: one a rapid
coarse sweep with a large frequency increment, followed by a set of
small fine sweeps localised around the resonances of interest using a
much finer frequency increment and taking more care with each
measured point. Of course, accurate detail of a resonance peak will only
be possible if a sufficiently small increment is used for the fine sweeps.
As a guide to the required increment, the following table shows the
largest error that might be incurred by taking the maximum FRF value
as the true peak value for that resonance.

3.8.2 Slow Sine Sweep Testing
This is the traditional method of mobility (or frequency response)
measurement and involves the use of a sweep oscillator to provide a
sinusoidal command signal, the frequency of which is varied slowly but
continuously through the range of interest. As before, it is necessary to
check that progress through the frequency range is sufficiently slow to
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Fig. 3.36 Typical FRF data from stepped-sine test

Number of Frequency Intervals
Between Half-Power Points*

Largest Error

% dB

1 30 3
2 10 1
3 5 0.5
5 2 0.2
8 1 0.1

* For definition, see Section 4.2

check that steady-state response conditions are attained before
measurements are made. If an excessive sweep rate is used, then
distortions of the FRF plot are introduced, and these can be as severe as
those illustrated in Fig. 3.37(a), which shows the apparent FRF curves
produced by different sweep rates, both increasing and decreasing in
frequency through a resonance region. One way of checking the
suitability of a sweep rate is to make the measurement twice, once
sweeping up and the second time sweeping down through the frequency
range. If the same curve results in the two cases, then there is a
probability (though not an assurance) that the sweep rate is not
excessive.

It is possible to prescribe a ‘correct’ or optimum sweep rate for a
given structure, taking due account of its prevailing damping levels. In
theory, any sweep rate is too fast to guarantee that the full steady state
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Fig. 3.37 FRF measurements by sine sweep test
(a) Distorting effect of sweep rate

response level will be attained, but in practice we can approach very
close to this desired condition by using a logarithmic or similar type of
sweep rate as indicated by the graphs in Figs. 3.37(b), (c) and (d).
Alternatively, the ISO Standard (Reference [35]) prescribes maximum
linear and logarithmic sweep rates through a resonance as follows (with
the natural frequency, (0r defined in Hz):

Linear sweep

or
<216(<or)2fcr)2

Hz/min

Logarithmic sweep

^max < 78(o>r X1!r
or

<SlOMCr)2
octaves/min
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Fig. 3.37 FRF measurements by sine sweep test.
(b) Time to build up to resonance; (c,d) Recommended sweep rates

234
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3.8.3 Periodic Excitation
With the facility of the spectrum analyser to provide simultaneous
information on all the frequency components in a given range, it is a
natural extension of the sine wave test methods to use a complex
periodic input signal which contains not one but all the frequencies of
interest. This is nothing more complicated than a superposition of
several sinusoids simultaneously, with the spectrum analyser capable of
extracting the response to each of these components, again
simultaneously.

The method of computing the FRF is quite simple: the discrete
Fourier transform is computed of both the force and response signals
and the ratio of these transforms gives the FRF, just as in equation
(2.137). Since both signals are represented by discrete Fourier series,
defined only at the set frequencies of that series, it follows that the FRF
determined in this way is also defined only at those specific frequencies.

Two types of periodic signal are used, and both are usually
generated within the analyser in order to ensure perfect
synchronisation with the analysis part of the process. One is clearly
deterministic and is an aperiodic signal in which all the components are
mixed with ordered amplitude and phase relationships (e.g. a square
wave), some of which will inevitably be relatively weak, while the other
is a pseudo-random type of signal. This latter category involves the
generation of a random mixture of amplitudes and phases for the
various frequency components and may be adjusted to suit a particular
requirement — such as equal energy at each frequency. This pseudo¬
random sequence is generated for a duration which equals the period of
one sample in the analysis process, and is output repeatedly for several
successive cycles and a. satisfactory measurement is then made. A
particular advantage of this type of excitation is its exact periodicity in
the analyser bandwidth, resulting in zero leakage errors and therefore
inquiring no windows to be applied before its spectral analysis. (Note
that one complete cycle must coincide exactly with a complete sample
for the input to the analyser in order for the process to be truly periodic.
It is possible for the original signal to be periodic in the literal sense but
if this condition is not met then it is not seen as periodic by the analysis
process and its spectral analysis will suffer from leakage as a result.)
Having said that, however, it is appropriate here to quote a derivative
of an old wisdom which, in the present context insists: ‘when it is not
necessary to use a window, then it is necessary not to use a window’. If,
as is the case for truly periodic signals, there is no need to use a window
of any form, then it is very important not to use one.
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3.8.4 Random Excitation
3.8.4.1 FRF estimates using random excitation
For a truly random excitation, a different approach is required in order
to determine the FRF although it is possible to undertake such
measurements using the same spectrum analyser as before. Often, the
source of a random command signal is found in an external device such
as a noise generator and not in the analyser itself, although some types
do contain independent noise sources for this purpose. In either event, it
is important that the signal be different from the ‘pseudo-random’ type
just mentioned as one of the family of periodic signals which are used
for this purpose. It is usual for random excitation to be applied through
an attached shaker.

The principle upon which the FRF is determined using random
excitation has been explained in the theory chapter (Section 2.11) and
relies on the following equations which relate the spectral density
properties of the excitation and the response of a system undergoing
random vibration:

^(^^(co).^) (3.7)

5„(®) =

where ^(o) , S^(co), ^(co) are the autospectra of the response and
excitation signals and the cross spectrum between these two signals,
respectively, and H(<o) is the frequency response function linking the
quantities x and f . (The curious reader might wonder at this point
why the FRF formulation is so much more complicated in the case of
random vibration than for periodic vibration. There is a simple
explanation for this: in steady-state periodic vibration, the response in
any one sample period can be related identically to the excitation in
that same sample time period. In random vibration, the response in any
individual sample is not due entirely to the excitation in that same
period. Thus, the FRF is not simply the ratio of the Fourier transforms
of the matching samples of random vibration, as is the case in periodic
vibration.)

The spectrum analyser has the facility to estimate these various
spectral densities, although it must be appreciated that such
parameters can never be measured exactly with only a finite length of
data. However, in this case we have the possibility of providing a cross
check on the results by using more than one of the equations (3.7). We
can obtain an estimate to the required FRF using the second equation
in (3.7), for example, and we shall denote this estimate as :
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#1(0) = -M®)
(3.8a)

We can also compute a second estimate for the FRF using the third
equation in (3.7) and this we shall denote as H2(co):

^»=777 (3.8b)

Now, because we have used different quantities for these two estimates,
we must be prepared for the eventuality that they are not identical as,
according to theory, they should be and to this end we shall introduce a
quantity Y , which is usually called the ‘coherence’ and which is defined
as:

2 _ Hi(co) (3.9)

The coherence can be shown to be always less than or equal to 1.0.
Clearly, if all is well with the measurement, the coherence should be

unity and we shall be looking for this condition in our test to reassure
us that the measurements have been well made. In the event that the
coherence is not unity, it will be necessary to establish why not, and
then to determine what is the correct value of the FRF. It should be
noted at this stage that many commercial analysers provide only one of
these two FRF estimates as standard and, because it is fractionally
easier to compute, this is generally ^(cd). Of course, given the
coherence as well, it is a simple matter to deduce the other version,
H2(a>), from equation (3.9) and it is an interesting exercise to overlay
the two estimates on the analyser screen. One feature which will be
noted is the fact that the phase is identical for both estimates, only the
magnitude is different in the two versions, but that may be found to
differ by very large amounts in some regions of the response function.
When this occurs it should be the source of considerable concern
because it means that the FRF estimate obtained is unreliable.

3.8.4.2 Noisy data
There are several situations in which an imperfect measurement might
be made, and a low coherence recorded. There may well be noise on one
or other of the two signals which could degrade the measured spectra:
near resonance this is likely to influence the force signal so that S^(co)
becomes vulnerable while at antiresonance it is the response signal
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which will suffer, making ^(<0) liable to errors. In the first of these
cases, will suffer most and so H2(®) might be a better indicator
near resonance while the reverse applies at antiresonance, as shown in
the following equations:

H,(<o) = S^+SM
(3.10a)

H ((B) = (3 10b)
Sxf (®)

where Smm((o) and S„n(m) are the autospectra of the noise on the output
and input, m(t) and n(t) , respectively. One suggestion which has been
made for an alternative, and closer to optimum, formula for the FRF is
defined as the geometric mean of the two standard estimates, identified
as Hv(a) and defined by:

Here again the phase is identical to that in the two basic estimates.
A second possible problem area arises when more than one

excitation is applied to the structure. In this case, the response
measured cannot be directly attributed to the force which is measured
and the cross checks afforded by the above procedure will not be
satisfied. Such a situation can arise all too easily if the coupling
between the shaker and the structure is too stiff and a lateral or
rotational constraint is inadvertently applied to the testpiece, as
discussed in Section 3.4.5.

Yet another possible source of low coherence arises when the
structure is not completely linear. Here again, the measured response
cannot be completely attributed to the measured excitation, and hence a
less-than-unity coherence will result.

3.8.4.3 Noise-free FRF estimates
It was mentioned in Chapter 2 that a third estimator for the FRF could
be defined in cases of random excitation which could have advantages
in certain situations: this was the so-called ‘instrumental variable’
estimate, or H3(co). This formula for the FRF is only possible if more
than the usual two channels are being measured simultaneously, and so
it can only be applied on multi-channel systems. However, these are
increasingly common and so the formula is of interest because it does
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provide an estimate for the FRF which is unbiased by noise on either
the force or the response transducer signals. The formula is:

#3(®) = ^v(m)
SJy (CO)

where u(t) is a third signal in the system, such as the voltage supplied
to the exciter, and it exploits the fact that noise on either input (force)
or output (response) channels does not contaminate cross-spectral
density estimates in the way that auto spectra are affected.

3.8.4.4 Leakage
It is known that a low coherence can arise in a measurement where the
frequency resolution of the analyser is not fine (small) enough to
describe adequately the very rapidly changing functions such as are
encountered near resonance and antiresonance on lightly-damped
structures. This is known as a ‘bias’ error and it can be shown that
when it occurs near resonance, the H2(®) estimate is always the more
accurate of the two, although this can itself be seriously in error relative
to the correct value. This is often the most likely source of low coherence
on lightly-damped structures.

Fig. 3.38(a) shows a typical measurement made using random
excitation, presenting the standard FRF, H^w) and the coherence Y .
This shows the trend for a great many practical cases, demonstrating a
good coherence everywhere except near resonance and antiresonance.
Fig. 3.38(b) shows a detail from the previous plot around one of the
resonances, and included this time are both the FRF estimates, ^(w)
and H2(<d) . Here it can be seen that the second alternative shows a
larger and more distinct modal circle and is in fact a much more
accurate representation of the true response function. When this
situation is encountered (low coherence near resonance), the best
solution is usually to make a zoom measurement. This is the procedure
described in Section 3.7.7 whereby the standard number of lines
available on the spectrum analyser may be applied to any frequency
range, not just to a ‘baseband’ range of 0 to romax Hz. Thus, we can
analyse in more detail between <nmjn and comax , thereby improving the
resolution and often removing one of the major sources oflow coherence.

It is worth just illustrating this aspect of zoom measurements by
means of a simple example. Suppose we have made a measurement,
such as that in Fig. 3.38(a), over a frequency range from 0 to 200 Hz.
This measurement gives us a frequency resolution of 0.78 Hz (for a
1024-point transform) which is clearly too coarse for the sharp
resonance regions, especially around the lowest one where the
frequency increment is a particularly large fraction of the natural
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Fig.3.38 FRF measurement using random excitation.
(a) FRF modulus and phase plots; (b) Nyquist plot detail of
and H2 FRF estimates; (c) Maximum errors in resonance peak
estimates [PC]
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frequency concerned. We can improve the resolution by, for example,
eight times by using a 25 Hz bandwidth zoom analysis with the
analyser set to measure 25 Hz range between 113 and 138 Hz. By this
device, we can greatly enhance the accuracy of the measurements
around resonance as is illustrated by the sequence of plots in Fig. 3.39.
It must be remembered, however, that this extra accuracy is gained at
the cost of a longer measurement time: the analyser is now working
approximately eight times slower than in the first measurement as the
sample length (and thus data acquisition time) is linked to the overall
frequency bandwidth.

Exactly how fine a frequency increment is required in order to
reduce this source of error to a minimum depends on several factors,
including the damping of the structure and the shaker/structure
interaction discussed in Section 3.4. Fig. 3.38(c) indicates the maximum
error which might be incurred in assuming that the true peak value of
FRF is indicated by the maximum value on the measured spectrum.

3.8.4.5 Postscript
As a parting comment in this section on random excitation, we should
mention the need to make several successive measurements and to
accumulate a running average of the corresponding FRF estimates and
coherence. It is sometimes thought that a poor coherence can be
eliminated by taking a great many averages but this is only possible if
the reason for the low coherence is random noise which can be averaged
out over a period of time. If the reason is more systematic than that,
such as the second and third possibilities mentioned above, then
averaging will not help. A sequence of plots shown in Fig. 3.40 help to
reinforce this point. However, for these cases or frequency ranges where
the coherence genuinely reflects a statistical variation, then some
guidance as to the required number of averages for a given level of
confidence can be obtained from Fig. 3.41, based on the ISO Standard
(Reference [35]).

Lastly, mention should be made here of a type of excitation referred
to as ‘periodic random’ which is, in fact, a combination of pseudo¬
random (Section 3.8.3) and ‘true’ random. In this process, a pseudo¬
random (or periodic) excitation is generated and after a few cycles, a
measurement of the input and the now steady-state response is made.
Then, a different pseudo-random sequence is generated, the procedure
repeated and the result treated as the second sample in what will
develop to be an ensemble of random samples. The advantage over the
simple random excitation is that due to the essential periodic nature of
each of the pseudo-random (periodic) samples, there are no leakage or
bias errors in any of the measurements. However, the cost is an
increase in the measurement time, since or of the available data is
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unused while steady response conditions are awaited for each new
sample.

3.8.5 Transient Excitation
There are three types of excitation to be included in this section because
they all share the same principle for their signal processing, and they
are (i) the ‘burst’ — a short section of signal (random or sine), (ii) the
rapid sine sweep (or ‘chirp’, after the sound made by the input signal),
and (iii) the impact from a hammer blow. The first and second of these
generally require an attached shaker, just as do the previous periodic
and random methods, but the last one can be implemented with a
hammer or similar impactor device which is not permanently attached
to the structure.

The principle which all these signals share is that the excitation and
the consequent response are completely contained within the single
sample of measurement which is made, a feature illustrated in
Fig. 3.42(a). In practice, it is common to repeat the transient event more
than once and to average the results to get the final result, but the
measurement is based on the above principle, which means that the
FRF can be derived from the simple ratio of the Fourier transforms of
the response and excitation signals: = X(w)/ F(a') . How they differ
is in the exact form of the transient excitation signal and in the nature
of the repeated application. In the burst type of signal, we have an
excitation which is applied and analysed as if it were a continuous
signal (such as periodic, or random), taking the successive samples for
averaging one immediately after the other. For the chirp and impulse
excitations, each individual sample is collected and processed before
making the next one, and averaging, often deciding whether or not to
accept the individual samples, and including them in the average, or
rejecting them.

3.8.5.1 Burst excitation signals
Burst excitation signals consist of short sections of an underlying
continuous signal — which may be a sine wave, a sine sweep or a
random signal — followed by a period of zero output, resulting in a
response which shows a transient build-up followed by a decay.
Examples of burst random excitation and response are shown in
Fig. 3.42(b). The duration of the burst is under the control of the
operator and it is selected so as to provide the ideal signal processing
conditions, which are essentially that the response signal has just died
away by the end of the measurement period. If this condition has not
been attained (burst too long), then leakage errors will result; if it has
been reached well before the end of the period (burst too short), then the
signal quality will be poor.
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Fig. 3.42 Signals and spectra for excitations.
(b) Burst excitation and response signals; (c) Chirp excitation

and response signals

The final measurement will be the result of averaging several
samples, as with continuous periodic or random signals. In the case of
the burst sine excitation, each sample would be expected to be identical
so that the averaging serves only to remove noise on the signals. In the
case of the burst random, however, each individual burst will be
different to the others and so in this case there is an element of
averaging randomly varying behaviour; a feature which is believed in
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some cases to enhance the measurement in the presence of weak non¬
linearities in the test structure.

3.8.5.2 Chirp excitation
The chirp consists of a short duration signal which has the form shown
in Fig. 3.42(c) and which produces a response such as that shown in the
accompanying graph. The frequency content of the chirp can be
precisely chosen by the starting and finishing frequencies of the sweep,
as illustrated in the figure and, as with the burst signal, the period of
excitation can be tailored to optimise the conditions for the signal
processing.

As in other cases, the final measurement will generally be the result
of averaging several repeated samples.

3.8.5.3 Impulsive excitation
The hammer blow produces an input and response as shown in the
companion plot of Fig. 3.42(d). From the analysis point of view, this and
the previous case are very similar, the main difference being that the
chirp offers the possibility of greater control of both amplitude and
frequency content of the input and also permits the input of a greater
amount of vibration energy. The spectrum of a chirp or a burst signal,
such as those shown in Fig. 3.42(c) can be strictly controlled to be
within the range between the starting and finishing frequencies of the
rapid sinusoidal sweep or of the narrow band random signal. Although
that of the hammer blow is dictated by the materials involved (as
described in the earlier section) and is rather more difficult to control.
However, it should be recorded that in the region below the first ‘cut-off
frequency induced by the elasticity of the hammer tip/structure contact,
the spectrum of the force signal tends to be very flat — see Fig. 3.42(e).
Whereas that for a chirp, when applied through a shaker, suffers
similar problems to those described earlier in Section 3. One practical
difficulty which is sometimes encountered in using the hammer
excitation is that of the ‘double-hit’. On some structures, the movement
of the structure in response to the hammer blow can be such that it
returns and rebounds on the hammer tip before the user has had time
to move that out of the way. In such cases, illustrated by the example in
Fig. 3.42(f), the spectrum of the excitation (and hence the response) is
seen to have ‘holes’ in it at certain frequencies, found on closer
inspection to be derived from the time gap between the initial impact
and the rebound. Although such holes in the spectrum are not
intrinsically a problem, they result in erroneous results being obtained
in a later stage of the measurement where the ratio is computed
between a zero (or noisy) response level and a zero (or noisy) force level,
again with an illustration shown in Fig. 3.42.
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In order to perform the required Fourier analysis of all these cases
of transient signals, an assumption is made that the data obtained from
a single event (transient input and output) can be regarded as
representing one period of a quasi-periodic process. This means that if
exactly the same input was applied T seconds after the first one (where
T is the duration of the transient event and the period of the
measurement), then exactly the same response would be observed as
had been captured in the T seconds of the actual measurement. This
assumption is illustrated in Fig. 3.43 where it can be seen that:

(i) the excitation pulse in (a) clearly satisfies the assumption;
(ii) the response history in (b) also satisfies the assumption; but that
(iii) the response history in (c) does not satisfy the assumption, at

least for the period T used to define the sample length.

This last example demonstrates a major difficulty encountered in
processing the data from some transient tests. If the data as shown in
Fig. 3.43(c) are used directly, then a form of leakage will result and the
required spectral properties will be erroneously estimated. (A physical
explanation for this error is readily provided: in the last case, if the
excitation transient were actually to be applied a second time, then the
response actually measured in the second sample period T would not
be the same as that measured in the first. Clearly, in this case, the
assumption of periodicity in the first measured samples would be
invalid.) It would appear that the solution in cases such as that shown
in Fig. 3.43(c) — which represents the case for most lightly-damped
structures — is to lengthen the period, T , but often this is not easily
changeable (it is determined by the frequency range required in the
resulting spectrum) and so other solutions are required. Once again, the
device of a window applied to the raw data provides a practical solution.
This time, it is recommended to apply an exponential window (see
Fig. 3.27) to the signals (it is preferable to apply the same window to
both signals) with the result shown in Fig. 3.43(d). By choosing an
appropriate exponential decay rate (equivalent, in effect, to adding
numerical damping to the structure), the modified signal can be made
to have effectively died away by the end of the prescribed measurement
period, thereby satisfying the signal processing needs.

This method of signal conditioning is widely used in modal testing
but it is not without its problems. Often, curiously complex modes are
extracted from data treated in this way and so the method should be
used sparingly in cases where accurate modal data are required for the
eventual application.

An alternative to this problem is to use the zoom facility mentioned
earlier. It is possible to exploit the fact that in a zoom measurement the
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measurement time is prolonged by the zoom factor and this very
extension of the sample length can be used to advantage in cases where
the baseband measurement is handicapped in the way described above.
One of the consequences of using a zoom is that the frequency band is
reduced by a proportionate amount and, at first sight, it might look as
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Fig. 3.43 Impulsive excitation as pseudo-periodic function
(e) Results processed by exponential window

though we shall lose frequency range by extending the measurement
period. However, by making a number (equal to the zoom factor) of
separate measurements, each one for a different centre frequency for
the zoomed band, it is possible to construct an FRF over the entire
frequency range of interest with the twin advantages of it being a
window-free measurement and having a much finer frequency
resolution than the original base-band measurement would provide.

Once the necessary conditions of pseudo periodicity have been
satisfactorily established, a discrete Fourier series description can be
obtained of both the input force signal, F(o^), and of the response
signal, X(co^) , and the frequency response function can be computed
from:

W*)= X&k)F^k)
(3.11)

Alternatively, the force signals can be treated in the same way as for
random excitation, and the formulae in equation (3.8) are used. Usually,
therefore, a spectrum analyser must be used for measurements made by
transient excitation. Users of the chirp tend to favour the former
approach while those more familiar with the impactor method advocate
the latter method. However, considerable care must be exercised when
interpreting the results from such an approach since the coherence
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function — widely used as an indicator of measurement quality — has a
different significance here. One of the parameters indicated by
coherence (although not the only one) is the statistical reliability of an
estimate based on a number of averages of a random process. In the
case of an FRF estimate obtained by treating the signals from a
succession of nominally-identical impacts as a random process, we must
note that, strictly, each such sample is a deterministic, and not
probabilistic, calculation and should contain no statistical uncertainty.
Thus, the main source for low coherence in this instance can only be
leakage errors, non-linearity or high noise levels — not the same
situation as for random excitation.

As mentioned above, there is a particular requirement in the case of
a transient excitation that the signals (in effect, the response signals)
must have died away by the end of the sample time. For lightly-damped
structures this may well result in rather long sample times being
required and this in turn poses a problem because it has a direct
influence on the frequency range that can be covered. For example, if it
is decided that a sample length of 2 seconds is necessary in order to
ensure that the response has died away, and we have a 512-point
transform, then the minimum time interval possible between successive
points on the digitised time histories will be approximately 4 ms. This,
in turn, means that the frequency resolution of the spectrum will be
0 5 Hz and the highest frequency on that spectrum will be as low as
250 Hz and it will not be possible to measure the FRF at higher
frequencies than this. Such a restriction may well clash with the
demands of the test and quite elaborate action may be required to
remove it, for example by using an exponential window or by using a
zoom facility as explained in the earlier sections.

Another feature usually employed in transient testing is that of
making a whole series of repeat measurements under nominally
identical conditions and then averaging the resulting FRF estimates.
The idea behind this is that any one measurement is likely to be
contaminated by noise, especially in the frequency regions away from
resonance where the response levels are likely to be quite low. While
this averaging technique does indeed enhance the resulting plots, it
may well be that several tens of samples need to be acquired before a
smooth FRF plot is obtained and this will diminish somewhat any
advantage of speed which is a potential attraction of the method.
Further details of both methods may be found in Reference [12] and
Reference [35].

3.8.6 Postscript
In this section we have described above the various different types of
excitation which can be used for mobility measurements. Each has its
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good and bad features and, of course, its advocates and followers. Not
surprisingly, no single method is the ‘best’ and it is probably worth
making use of several types in order to optimise the time and effort
spent on the one hand, and the accuracy obtained on the other. To this
end, it is often found to be useful to make preliminary measurements
using a wide frequency range and a transient or random excitation type
and to follow this up with accurate sinusoidal-test measurements at a
few selected frequency points in the vicinity of each resonance of
interest. It is these latter data which are then submitted for subsequent
analysis at which stage their greater accuracy is put to full advantage
while excessive time has not been wasted on unnecessary points.

3.9 CALIBRATION
As with all measurement processes, it is necessary to calibrate the
equipment which is used and in the case of FRF measurements, there
are two levels of calibration which should be made. The first of these is
a periodic ‘absolute’ calibration of individual transducers (of force and
response) to check that their sensitivities are sensibly the same as those
specified by the manufacturer. Any marked deviation could indicate
internal damage which is insufficient to cause the device to fail
completely, but which might nevertheless constitute a loss of linearity
or repeatability which would not necessarily be detected immediately.
The second type of calibration is one which can and should be carried
out during each test, preferably twice — once at the outset and again at
the end. This type of calibration is one which provides the overall
sensitivity of the complete instrumentation system without examining
the performance of the individual elements.

The first type of calibration is quite difficult to make accurately. As
in all cases, the absolute calibration of a transducer or a complete
system requires an independent measurement to be made of the
quantity of interest, such as force or acceleration, and this can be quite
difficult to achieve. The use of another transducer of the same type is
seldom satisfactory as it is not strictly an independent measure, except
in the case of using a reference transducer which has been produced to
have very stable and reliable characteristics and which has previously
been calibrated against an accepted standard under strictly controlled
conditions. Other means of making independent measurements of
displacements are generally confined to optical devices and these are
not widely available, while independent methods of measuring force are
even more difficult to obtain.

As a result, absolute calibration of transducers is generally
undertaken only under special conditions and is most often performed
using a reference or standard accelerometer, both for accelerometers
and — with the aid of a simple mass — of force transducers.
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One of the reasons why the absolute type of calibration has not been
further developed for this particular application is the availability of a
different type of calibration which is particularly attractive and
convenient. With few exceptions, the parameters measured in a modal
test are ratios between response and force levels, such as mobility or
receptance, and so what is required is the ability to calibrate the whole
measurement system. The quantities actually measured in the great
majority of cases are two voltages, one from the force transducer and its
associated electronics and the other from the response transducer.
These voltages are related to the physical quantities being measured by
the sensitivities of the respective transducers thus:

V/ = Eff (3.12)
= E^x

As mentioned above, there is some difficulty in determining values for
Ey and Ex individually but we note that, in practice, we only ever use
the measured voltages as a ratio, to obtain the frequency response
function:

x
7

f A ( A
E Vx (3.13)

and so what is required in the ratio of the two sensitivities:

E-(Ef/E^
This overall sensitivity can be more readily obtained by a calibration
process because we can easily make an independent measurement of
the quantity now being measured — the ratio of response to force.
Suppose the response parameter is acceleration, then the FRF obtained
is inertance (or accelerance) which has the units of (1/mass), a
quantity which can readily be independently measured by other means.
If we undertake a mobility or inertance measurement on a simple rigid
mass-like structure, the result we should obtain is a constant
magnitude over the frequency range at a level which is equal to the
reciprocal of the mass of the calibration block, a quantity which can be
accurately determined by weighing.

Fig. 3.44 shows a typical calibration block in use together with the
result from a calibration measurement indicating the overall system
calibration factor which is then used to convert the measured values of
(volts/volt) to those of (acceleration/force), or whatever frequency



256

Calibration mass

Frequency(Hz)
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(a) Measurement setup; (b) Typical measurement
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response quantity is to be produced. The scale factor thus obtained
should be checked against a corresponding value computed using the
manufacturers’ stated sensitivities and amplifier gains to make sure
that no major errors have been introduced and to see whether either of
the transducers has changed its sensitivity markedly from the nominal
value. In practice, this check need only be made occasionally as the
approximate scale factor for any given pair of transducers will become
known and so any marked deviations will be spotted quite quickly.

A calibration procedure of this type has the distinct advantage that
it is very easy to perform and can be carried out in situ with all the
measurement equipment in just the same state as is used for the FRF
measurements proper. In view of this facility, and the possibility of
occasional faults in various parts of the measurement chain, frequent
checks on the overall calibration factors are strongly recommended: as
mentioned at the outset, at the beginning and end of each test is ideal.

3.10 MASS CANCELLATION
It was shown earlier how it is important to ensure that the force is
measured directly at the point at which it is applied to the structure,
rather than deducing its magnitude from the current flowing in the
shaker coil or other similar indirect processes. This is because near
resonance the actual applied force becomes very small and is thus very
prone to inaccuracy. This same argument applies on a lesser scale as we
examine the detail around the attachment to the structure, as shown in
Fig. 3.45(a).

Here we see part of the structure, an accelerometer and the force
transducer and also shown is the plane at which the force is actually
measured. Now, assuming that the extra material (shown by the cross
hatching) behaves as a rigid mass, m* , we can state that the force
actually applied to the structure, ft , is different from that measured by
the transducer, fm , by an amount dependent on the acceleration level
at the drive point, x , according to:

ft=fm~m*x (3-14)

Physically, what is happening is that some of the measured force is
being ‘used’ to move the additional mass so that the force actually
applied to the structure is the measured force minus the inertia force of
the extra mass.

Now, the frequency response quantity we actually require is At (co)
(~X/Ft ), although we have measurements of X and Fm only, yielding
an indicated inertance, Am (co) . This is a complex quantity and if we
express it in its Real and Imaginary parts, we can obtain a relationship
between Am (co) and At (co) as follows:
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Fig. 3.45 Mass cancellation.
(a) Added mass to be cancelled; (b) Typical analogue circuit

Re(Ft )= Re(Fm )-m* Re(x)
Im^ ) = Im(Fm )-m *Im(x) (3.15a)

or

M1/At ) =M1/Am )- *

Im(l/Az)=Im(l/Am) (3.15b)

Equally, it is possible to perform this process of ‘mass cancellation’, or
‘cancelling the mass below the force gauge’, by using an electronic
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circuit which takes the two signals and carries out the vector addition of
equation (3.11) before the signals are passed to the analyser. A suitable
circuit using high-gain operational amplifiers is shown in Fig. 3.45(b),
containing a variable potentiometer whose setting is selected according
to the magnitude of the mass to be cancelled, m* . A straightforward
way of determining the correct setting with a device of this type is to
make a ‘measurement’ with the force transducer and accelerometer
connected together but detached from the structure. Then, by adjusting
the variable potentiometer until there is effectively zero corrected force
signal, ft , we can determine the appropriate setting for that particular
combination of transducers.

Mass cancellation is important when the mass to be cancelled (m* )
is of the same order as the apparent mass of the modes of the structure
under test, and this latter is a quantity which varies from point to point
on the structure. If we are near an antinode of a particular mode, then
the apparent mass (and stiffness) will tend to be relatively small —
certainly, only a fraction, of the actual mass of the structure — and here
mass cancellation may well be important. However, if we now move the
same force and response transducers to another position which is near a
nodal point of that same mode, now we shall find that the apparent
mass (and stiffness) is much greater so that the addition of m* is less
significant and the mass cancellation correction is less urgent. This
phenomenon manifests itself by a given structure appearing to have
different values for each of its natural frequencies as the excitation
and/or response points are varied around the structure.

One important feature of mass cancellation is that it can only be
applied to point measurements, where the excitation and response are
both considered at the same point. This arises because the procedure
described above corrects the measured force for the influence of the
additional mass at the drive point. If the accelerometer is placed at
another point then its inertia force cannot be subtracted from the
measured force since it no longer acts at the same point. It is still
possible to correct for that part of m* which is due to part of the force
transducer mass but this is not the total effect. It should also be noted
that the transducers’ inertia is effective not only in the direction of the
excitation but also laterally and in rotation. There are therefore several
inertia forces and moments in play, only one of which can usually be
compensated for. Nevertheless, there are many cases where this
correction provides a valuable improvement to the measurement and
should also be considered.



260

3.11 ROTATIONAL FRF MEASUREMENT
3.11.1 Significance of Rotational FRF Data
It is a fact that 50% of all degrees of freedom are rotations (as opposed
to translations) and 75% of all frequency response functions involve
rotational DOFs. However, it is relatively rare to find reference to
methods for the measurement of rotational FRFs and this reflects the
fact that virtually none are made. This situation arises from a
considerable difficulty which is encountered when trying to measure
either rotational responses or excitations and also when trying to apply
rotational excitation, i.e. an excitation moment.

3.11.2 Measurement of Rotational FRFs Using Two or More
Transducers

A number of methods have been tried to measure FRF data for the
rotational DOFs, with limited success, but these are still in a
development stage. However, it is believed that these FRF terms will be
of increasing importance for future applications of modal testing and so
it is appropriate to include here a brief discussion of some of the aspects
of measuring rotational FRFs.

There are basically two problems to be tackled; the first is that of
measuring rotational responses and the second is a companion one of
generating and measuring the rotational excitations. The first of these
is the less difficult and a number of techniques have been developed
which use a pair of matched conventional accelerometers placed a short
distance apart on the structure to be measured, or on a fixture attached
to the structure. Both configurations are illustrated in Fig. 3.46 which

Fig. 3.46 Measurement of rotational response

also shows the DOFs of interest, Xq and 0O . The principle of operation
of either arrangement is that by measuring both accelerometer signals,
the responses x0 and can be deduced by taking the mean and
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difference of xA and xg :

xq = 0.5(x^ + x#)
60 = (xA -x^/t

(3.16)

This approach permits us to measure half of the possible FRFs — all
those which are of the X/F or &/F type. The others can only be
measured directly by applying a moment excitation and in the absence
of any suitable rotational exciters it is necessary to resort to a similar
device to the above. Fig. 3.47 shows an extension of the exciting block
principle in which a single applied excitation force, Fl say, can become
the simultaneous application of a force Fo (=Fj) and a moment Mq
(--Fi.E^). A second test with the same excitation device applied at
position 2 gives a simultaneous excitation force Fo (= F2 ) and moment
Wo (-^2^2)- By adding and differencing the responses produced by

Fig. 3.47 Application of moment excitation

these two separate excitation conditions, we can deduce the
translational and rotational responses to the translational force and the
rotational moment separately, thus enabling the measurement of all
four types of FRF:

X & X . ®— , — , — and —F F M M

The same principle can be extended to more directions by the use of
a multidimensional excitation fixture until the full 6x6 mobility matrix
at any given point can be measured. However, it must be noted that the
procedures involved are quite demanding, not least because they
require the acquisition of subsequent processing of many different
measurements made at different times.

Other methods for measuring rotational effects include specially
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developed rotational accelerometers and shakers but in all cases, there
is a major problem that is encountered, which derives from the fact that
the prevailing levels of output signal generated by the translational
components of the structure’s movement tend to overshadow those due
to the rotational motions, a fact which makes the differencing
operations above liable to serious errors. For example, the magnitude of
the difference in equation (3.14) is often of the order to 1-2% of either of
the two individual values. When the transducers have a transverse
sensitivity of the order of 1-2%, the potential errors in the rotations are
enormous. Nevertheless, several applications of these methods have
been quite successful.

3.11.3 Measurement of Rotation DOFs Using a Scanning Laser
The scanning laser Doppler velocimeter (LDV) has already been
introduced (in section 3.5.8) as a non-contact transducer which has
applications to difficult response measurement tasks. It has now been
applied to the rotational DOF measurement problem, with promising
results.

The original use of the LDV in the present context was to provide a
convenient means of measuring the two responses required by the
method described in the previous section, and this it was found possible
to do. However, advantage can be taken of the scanning capability,
described in section 3.5.8.3, to measure the rotational DOFs with
greater facility than is possible in the two-point method just discussed.
The technique is to use the SLDV to conduct a continuous measurement
while performing a small-amplitude linear scan at frequency Q along a
line between the two points of measurement in the previous approach
while the structure is undergoing steady-state harmonic vibration at
frequency, co. This produces an amplitude-modulated signal whose three
frequency components (co — Q, co, co + Q) can be used to reveal the
translation motion normal to the surface of the test structure and the
rotation about an axis in the plane of the surface and perpendicular to
the line of the scan. It will be found that the two side-band frequency
components are actually complex conjugates of each other, so that data
are only available for two separate measurements: in this case, one
translation DOF and one rotation DOF, as required.

In fact, the optimum use of this technique is a simple extension of
the foregoing method in which the LDV is set to perform a small¬
diameter circular scan around the point of measurement in order to
measure three response DOFs: the normal translation plus the two
rotations about perpendicular axes in the plane of the surface. The
procedure is illustrated in Fig. 3.48(a) and shows the three DOFs at the
measurement site, O, as including the normal translational response,
z(t) , as well as the two rotations about the perpendicular axes, 0x(t)
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(a)

(b)

Fig. 3.48 Circular LDV scan to measure 3DOFs at point,
(a) Setup; (b) Typical RDOF measurement
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and Gy(t). The point at which the LDV makes its instantaneous
measurement is at the end of the beam which is circling around the
point, O, at a scanning speed of Qz and at a radius of r.

It can be shown that the output of the laser velocimeter, in the case
where the structure is vibrating sinusoidally at frequency, co, and where
the small area of the vibrating surface which is covered by the scan is
effectively rigid, is once again a signal with three sinusoidal
components — V® , , Vm+Q — at the three frequencies:

• co
• co - Qz
• co + Qz

For each of these three frequency components there is a distinct
measurable magnitude and phase and these data can be converted to
yield the complex amplitudes — V, &x , &y — of the three response
DOFs of interest, z(t), Qz(t) and Qy(t), using the following formulae:

Re(Z) = Re(VJ ;

Im(Z) = Im^)

Re(©x) = (im^)- ;
. . (3.17)

Im(©x) = (Re(Vffl_n)-Re(Vffl+fi^
Re(©y) = (Re^+n) + Re(Vffl_n))/r ;

Im(©y) = (im^-n) + Im(Vm+Q))/r

An example of this application of the SLDV is shown in Fig. 3.48(b)
and includes data obtained during a narrow-band random excitation
and response measurement, demonstrating the applicability of the
method to more general vibration than the simple harmonic case.

It should be noted that the processing of the LDV output which
results in the tri-frequency spectra is subject to the various features of
signal processing already discussed, and care needs to be taken to avoid
or to minimise any such problems. In particular, the problem of leakage
encountered in discrete Fourier transform computations can be avoided
altogether by selecting a scan rate (frequency) which is periodic with
respect to the length of the analysis window. This setting is in addition
to those already in place in respect of the frequency(ies) of vibration
which are being measured, but since the scanning process is under the
user’s direct control, arranging for this requirement to be met need not
be difficult.
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3.12 MEASUREMENTS ON NON-LINEAR STRUCTURES
3.12.1 Introduction to Testing Structures with Non-linear

Behaviour
Most of the theory upon which modal testing and FRF measurement is
founded relies heavily on the assumption that the test structure’s
behaviour is linear. By this is meant that (i) if a given loading is
doubled, the resulting deflections are doubled and (ii) the deflection due
to two simultaneously-applied loads is equal to the sum of the
deflections caused when the loads are applied one at a time. In practice,
real structures are seldom completely linear although for practical
purposes many will closely approximate this state. However, there are
many complex structures which do behave in a non-linear way,
especially in the vicinity of resonances, usually — but not always — at
lower frequencies, and these can give rise to concerns and problems
when they are being tested.

Signs of non-linear behaviour include:

' natural frequencies varying with position and strength of excitation;
distorted frequency response plots, especially near resonances;
unstable or unrepeatable data.

Probably the most obvious way of checking for the existence of non¬
linearity is to repeat a particular FRF measurement a number of times
using different levels of excitation (and hence response) each time, or
using different types of excitation signal (see below). If the resulting
curves differ from one such measurement to the next, especially around
the resonances, as illustrated in Fig. 3.49, then there is a strong
possibility of non-linearity, and this is a check which will work with
most types of excitation signal.

If signs of non-linear behaviour are thus detected, it is usefid to
have a strategy for how to proceed with the modal test because many of
the basic relationships used in the various stages of data processing and
analysis can no longer be relied upon. It turns out that most types of
non-linearity are amplitude-dependent and so if it were possible to
measure an FRF curve while keeping the amplitude of response
(specifically the displacement response) at a constant level, the
behaviour of the structure would be linearised and it would exhibit the
characteristics of a linear system. Of course, the data and the model
obtained in this way would strictly only apply at that particular
vibration level but the fact that the behaviour had been maintained as
linear is an important achievement, and one that means that we can
extend our use of modal analysis into the realm of non-linear
structures, even if only slightly.
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Fig. 3.49 Example of non-linear system response for different excitation
levels.
(a) Mobility FRF modulus plots; (b) Receptance FRF Nyquist
plots

3.12.2 Effects of Different Excitations on Non-linear System
Response

While discussing the question of non-linearity, it is interesting to see
what form is taken by a single FRF curve for a non-linear system when
no particular response level control is imposed. The result depends
markedly on the type of excitation signal used as well as the nature of
the non-linearity. Fig. 3.50 shows some typical results from
measurements made on an analogue computer circuit programmed to
exhibit a cubic stiffness characteristic using sinusoidal, random and
transient excitations. The stepped-sine test method using the FRA
clearly shows the distortion to the frequency response plots caused by
the slight non-linearity. However, neither of the other two cases — both
of which used the DFT spectrum analyser to decompose the signals —
are anything like as effective at detecting the presence of the non¬
linearity. It can be concluded from this result that, when using a
spectrum analyser, the appearance of a normal-looking FRF does not
guarantee that the test system is indeed linear: there is some aspect of
the signal processing which has the effect of linearising the structure’s
behaviour. Indeed, true random excitation applies a linearisation
procedure to the structure’s behaviour which is considered to provide an
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Fig. 3.50 FRF measurements on non-linear analogue system.
(a) Sinusoidal excitation; (b) Random excitation; (c) Transient
excitation

optimised linear model for the test structure. Other methods of
excitation — sine, periodic, transient — each produce different results,
although that from a sinusoidal excitation is the one that can readily be
related to the theoretical predictions based on the analysis presented in
Section 2.11.
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3.12.3 Level Control in Measuring FRF Data on Non-linear
Systems

It is widely accepted that one of the best ways of dealing with slight
non-linearities in practical structures is to exercise a degree of
amplitude control on the vibration levels developed during
measurement. This is in recognition of the previously-asserted feature
that most practical non-linearities are amplitude-dependent. Some
measurements made on a markedly non-linear structure are presented
in Fig 3.51, and show the result of using (a) response level control,

Fig. 3.51 Measurements on non-linear structure using level control.
(a) Response level control; (b) Force level control; (c) No control
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(b) force level control and (c) no level control, in passing through a
resonance region. In these methods, the level of excitation must be
adjusted at each frequency of measurement until the control parameter
is steady at the chosen level. As the structure is non-linear, this can be
more difficult to achieve than expected. Results are shown in (a)
Nyquist, (b) Bode and (c) Inverse plot formats and it can clearly be seen
how the constant-response level test provides the closest to linear
behaviour.

We shall discuss in the next chapter a means of detecting and
identifying non-linear behaviour from the modal analysis processing of
measured FRF data. However, as it is important to detect these effects
as early as possible in the test procedure, it is appropriate to consider
every opportunity for this task. We shall introduce two such
opportunities here at the stage where the FRFs are being measured.

One approach offers the possibility of identifying different types of
structural non-linearity from a single FRF curve, always providing that
this still contains the necessary evidence (see comments above
regarding the use of the Fourier transform methods for measuring FRF
data). This method is based on the properties of the Hilbert transform
(related to the Fourier transform but different in that it transforms
within the frequency domain (or time domain) rather than between the
two, which dictates that the Real Part of a frequency response function
is related to the corresponding Imaginary Part by a direct Hilbert
transform. Thus, if we have measurements of both parts (as is usually
the case), we can perform a check on the data by using the measured
Real Part to compute an estimate for the Imaginary Part and then
comparing this with the actual measured values of the Imaginary Part.
A similar comparison can also be made in the other direction using the
measured Imaginary Part to estimate the Real Part. Differences
between estimated and measured curves are then taken as an
indication of non-linearity and the nature of the differences used to
identify which type. An example of the procedure is shown in Fig. 3.52
and further details may be found in Reference [37]. However, it must be
noted that this procedure will only work effectively if the FRF data have
oeen measured using a sinusoidal excitation and care must be taken to
avoid misleading results which can arise if the data relate only to a
Limited frequency range, thereby restricting the reliability of the Hilbert
transform.

The second method is altogether simpler and is based on the
features expected to be found in the Inverse FRF plots shown in
Chapter 2. In these plots, for an SDOF system, the Real Part of the
plotted function is expected to be linear with (frequency)2 — at least if
the behaviour is that of a linear system with constant mass and
stiffness properties — while the Imaginary Part plot should be linear
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Fig. 3.52 Use of Hilbert transform to detect non-linearity.
(a) Effectively linear system; (b) Non-linear system

with frequency, provided that the damping is constant. If any of these
three physical parameters were to be amplitude-dependent (and that is
most likely for the stiffness and/or the damping), then one or other, or
both, of these plots would be expected to lose their straight-line
characteristic. Such a deviation from the expected form is very easy to
see by eye and so this can be a very effective first-line detector of non¬
linear behaviour in the test object — see Fig. 3.53.

In order for either of these approaches to be effective, any non¬
linearity on the structure must be exercised and so the constant-
response-level type of test should not be used in this situation: it is
better to use force control in order to cover a wide range of amplitudes
as the resonance is traversed.

3.12.4 Summary
The techniques required to deal effectively with structures which have
any significant degree of non-linearity are beyond the scope of this text,
and reference should be made to one of the many detailed works which
address this subject. However, it must be noted that the majority of
practical structures, while exercising a small degree of non-linear
behaviour, do respond to testing and modelling by the methods of
modal analysis promoted in this book. This short section has sought to
demonstrate that slight deviations from the standard modal testing
techniques permit a first-level detection of such non-linear behaviour
and, even if its characterisation is only very approximate, and not
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Re(1/H)

Fig. 3.53 Inverse FRF plots for non-linear systems

satisfying to the mathematician, guide the practitioner towards testing
methods which will not suffer unduly from the slight deviations from
expected behaviour which such structures will demonstrate.

This represents a pragmatic strategy to the measurement phase
when dealing with non-linear structural behaviour in modal testing.

3.13 MULTI-POINT EXCITATION METHODS
3.13.1 Multi-point Excitation in General
During the decade from the mid-1980s to the mid 1990s there was a
significant growth in the development and use of multiple-excitation
methods for modal testing — so-called MIMO (Multi-input, Multi¬
output) test methods. The drive for this development was primarily in
the need for high-quality test data, and especially for FRF data which
possesses a high degree of consistency; a requirement of growing
proportions to satisfy the needs of the increasingly sophisticated multi¬
reference modal analysis algorithms. There are other benefits, also,
including:

• the excitation of large structures in a way which more closely
simulates their vibration environment in service (than is achieved
by a single-point excitation test),

• the facility of detecting and identifying double or repeated modes,
and

• the need to complete some tests in the very minimum of on-
structure time.

Partly because of the complexity of the procedures, and of the expense
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involved, the majority of modal tests are still performed using a single¬
point excitation procedure, but the methods which make use of several
simultaneously-applied excitations are today well developed and will be
described in outline below. A full exposition of these methods falls
outside the scope of this work although it is recognised that they are
highly suitable for certain specific applications, such as large aerospace¬
type structures.

The theory upon which such multi-point excitation methods are
based has been presented in Chapter 2 and we shall briefly discuss here
the practical implementation of some of the different methods in
current use. A more detailed account of these methods, and others of the
same type, may be found in Reference [38],

3.13.2 Appropriation or Normal Mode Testing
The first method to be discussed is the oldest, historically, and one
which has been used consistently for almost 50 years in the aerospace
industry. It is the method known as ‘Normal Mode testing’ or sometimes
‘Appropriation’ and is different from all other methods used in modal
testing in that it seeks to establish vibration in a pure mode of vibration
by careful selection of the locations and magnitudes of a set of
sinusoidal excitation forces.

It was shown earlier (equations (2.67) to (2.69)) that it is
theoretically possible to generate a monophased response vector by a
multi-point, monophased harmonic force vector, and furthermore that
these two vectors would be exactly 90° out of phase when the excitation
frequency is equal to one of the undamped system’s natural frequencies.
If we satisfy the conditions posed in equations (2.67) to (2.69) where the
force and response vectors are exactly in quadrature with each other,
then (2.63) may be written as:

(318)

It follows that this equation is valid only if det | (co) | = 0 and this
condition provides the basis of a method to locate the undamped system
natural frequencies from measured FRF data. A second stage — to find
the appropriate force vector — then follows by substitution of the
specific frequencies back into equation (3.18).

3.13.3 Multi-phase Stepped-Sine (MPSS) Testing
A modified version of the Normal Mode Test is provided by the MPSS
method which is also a steady-state sinusoidal type of test, using
several simultaneous exciters applied at different points, but in this
case the magnitudes of each force are not so tightly controlled as before.

The basic system is one of an MDOF system excited at a single
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sinusoidal frequency, co, by a set of p excitation forces, {F}el“z, such
that there is a set of steady-state responses, described by {X}e'at . Of
course, it is clear that these two vectors are related by the system’s FRF
properties as:

Mnxi = [^(ro)lnxp Hpxi (3.19)

However, it is not possible to derive the FRF matrix from a single
equation of the form shown in (3.19), not least because there will be
insufficient data in two vectors, one of length p and the other of length
n, to define completely an n x p matrix, even if it is symmetric. What is
required is to make a series of p' measurements of the same basic type,
using different excitation vectors, {F}£ , each time, choosing these in
such a way that when the forcing matrix is assembled from all the p'
individual vectors, [F]pxp- = [{F}1{F}2 ...{F}p-] , it is non¬
singular. This can only be assured if:

• there are at least as many vectors as there are forces, p' > p ;
• the individual force vectors are linearly independent of each other, a

condition which requires some care in the selection of a pattern of
forces for each part of the test.

A second matrix is also constructed, this time containing the
corresponding response vectors: [X],lxp> = [{X}1{X}2 ,..{X}p']
and now these two collections of measured data can be used to
determine the required FRF matrix, from:

[#(«>)U = kLxp' k&xp (3.20)

where + denotes the generalised inverse of the forcing matrix. In
practice, it is often possible to include more than the minimum number
of force patterns (p'), especially if the number of exciters used (p) is
small, say less than 4 or 5, and thereby to obtain a least-squares
solution from the overdetermination of the problem.

3.13.4 Multi-point Random (MPR) Testing
3.13.4.1 Concept
The most popular of the multi-point test methods to evolve over the past
decade is that known as ‘Multi-point Random’ or, simply ‘MPR’. In this
method, advantage is taken of the incoherence of several uncorrelated
random excitations which are applied simultaneously at several
different points. By this device, the need to repeat the test several
times, as was necessary for the MPSS method, is avoided.
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In the case of the multi-point random approach, the purpose of the
method is to obtain the FRF data required for modal analysis but in an
optimal way. Specifically, the aim of using several exciters
simultaneously is to reduce the probability of introducing systematic
errors to the FRF measurements, such as can arise when using
conventional single shaker methods. Once again, the underlying theory
is presented in Chapter 2, this time in equation (2.131). In order to
introduce and to explain the concept, we shall consider the simplest
form of a multiple excitation as that of a system excited by two
simultaneous forces, f\(t) and /2(0 > where the response is of
particular interest. Assuming that we have measured the various auto-
and cross-spectral densities of and between the (three) parameters of
interest, we can derive expressions for the required FRF parameters,
H (co) and , dropping the (co), for simplicity, from:

#<1 ($li $22 ~ ^2i $12)
($11 S22 ~S12 $21) (3.21a)

2^
_ ($2t $11 ~ $li $21)

12 ($11 $22 “ $12 $21) (3.21b)

2These expressions can be used provided that S22 *|$12 | > a
condition which is more readily described by the requirement that the
two excitation forces must not be fully correlated. Care must be taken in
practice to ensure satisfaction of this condition, noting that it is the
applied forces, and not the signal sources, which must meet the
requirement.

3.13.4.2 General formulation
The simple 2-input, 1-output case described above serves to illustrate
the concept. However, in practice, the method is applied using different
numbers of exciters and, certainly, several response points
simultaneously. The expressions quoted in (3.17) can be extended to
these more general cases, as follows:

4/WL = M4xi, (3.22)

where it can be seen that the matrix of spectral densities for the forces
must be non singular. As mentioned above, care must be taken in
practice to ensure satisfaction of this condition, noting that it is the
applied forces, and not the signal sources, which must meet the
requirement. This is a requirement which is more readily stated than
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achieved, largely because of the interaction between the different
shakers which is provided by the structure to which they are all
attached. Even if the input signals to the exciters’ amplifiers are strictly
uncorrelated (with each other), it is almost certain that the forces
applied to the structure will not be. Worst of all, this feature is most
pronounced at or near resonance regions where the local mode shape
dominates the dynamic response, and is largely independent of the
actual forcing pattern, so that the forces applied by the different
exciters are influenced as much by the structure itself as by the inputs
to the exciters. Ways around this problem may have to be found if the
method is to succeed in practice and the discussion in Section 2.11.3.4
offers some proposals for the best way to proceed: by using the input
signals to the exciters as parameters instead of, or as well as, the actual
force signals. Thus, we have the alternative version (from [25]):

[Hxf (co)]nxp = [Sxv (co)]nxp [-Sfv (“)]pip (3.23)

which may be easier to use in practice.

3.13.4.3 Coherence in MPR measurements
In a similar way to that in which we defined coherence for the simple
two-channel SISO system, we can also make use of the same concepts in
this more general case. If, during a MIMO test, we have measured
various spectral properties which can be assembled into the three
matrices:

[SFF(co)] ; [Sxx(®)] and [Sfx(®)]

then we can derive an estimate for the FRF matrix, [Hj(co)] , using:

[H^co)]7 = [Sff(o>)] 1 [Sfx(®)] (3.24)

and then compute an estimate for the autospectrum of the response
from:

[§xx (co)] = [fl] (co)][Sfx (®)] (3.25a)

which leads to

[Sxx(co)]= [Sxf(“)][Sff(“)] 1 (3.25b)



276

Now, by comparing the estimated response spectrum, [S^x(co)], with
the actual measurement, (®)] > we obtain a formula for the
multiple coherence between the two parameters, {/(i)} and {x(t)J ,
[y2(®)] , as follows:

[r2 (“)]= [sxx C®)]1 [SXF (®)][SFFM?1 (“)] • (3.26)

This whole topic becomes quite complex from this point and the
interested reader is directed to one of the specialist texts on the subject,
such as Reference [39] for further detailed discussion.

3.13.5 Multiple-reference Impact Tests
Although not falling clearly into the category of multiple-exciter
methods, the class of hammer excitation tests referred to as ‘Multi¬
reference Impact Tests’ (MRIT) should be included in this section of the
book because they do address some of the features which the classical
multi-input methods are intended to cover. In the MRIT, typically three
response references are measured (often, the x, y and z components at
the response measurement location) every time a hammer blow is
applied to the structure. As will be seen more clearly when we discuss
the modelling process in Chapter 5, the FRF data collected by
performing a test in this way will be the equivalent of exciting the
structure at three points simultaneously while measuring the response
at each of the n points of interest. Thus, in the sense that a multiple¬
input test is a multi-reference measurement (measuring several parallel
columns of the FRF matrix), so too is the MRIT since it provides a
multi-reference measurement by including several rows of the same
FRF matrix. Its principal advantage over the single-reference
measurement made in the same way is its ability to detect double or
repeated roots in structures.

3.14 MEASURING FRFs AND ODSs USING THE SCANNING
LDV

3.14.1 Types of Scan Using the SLDV
One application of the scanning LDV to the measurement of FRF data
has already been introduced in the section in measuring RDOF data.
However, that was a special case of a whole range of similar
applications in which two major types of measurement are made
possible by the capabilities of this transducer. These types of
measurement are (i) FRF data at individual frequencies or over
specified frequency ranges and (ii) operating deflection shapes at
individual frequencies. What all the different measurement procedures
have in common is the positive and controlled use of the scanning
capability of the SLDV whereby time can be used as a direct measure of
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spatial position on the structure so that spectral analysis of time¬
varying signals translates directly into spatial, as opposed to (or as well
as) spectral, descriptions of the vibrating structure. Most of the
scanning applications described in this section are based primarily on
the measurement of a structure which is undergoing steady-state
harmonic vibration. However, many of them can be extended to include
narrow-band random or periodic vibration, and even transient
vibration, under the condition that the width of the frequency band
encompassed is smaller than the spacing between the sideband spectral
lines that are generated by the scanning process (this spacing is usually
determined by the scanning rate employed for the measurement).

There are several different types of scan that are useful for this
class of measurement. These include:

• straight line scans (in one dimension),
• circular scans,

conical scans,
• raster scans,
• Lissajou-type scans,
• arbitrary scans (in two dimensions) — see Fig. 3.54.

The scans can be ‘short’ or ‘long’, this classification referring to the scan
length relative to the spatial wavelength of any vibration patterns that
might be measured. In effect, ‘short’ scans assume that the vibrating
surface is effectively rigid along the length of the scan line while ‘long’
scans make no such assumption. Straight line scans can be linear
(constant velocity of scan with abrupt changes of direction at each end)
or sinusoidal (giving smoother changes of direction at each end of a
scan).

3.14.2 Straight Line Scans with the SLDV
3.14.2.1 Short straight-line scans (two-axis FRF measurement)
The first use of the SLDV exercising a short scan as part of a modal
testing task has already been described in Section 3.11.3: to the
measurement of vibration in the normal and one of the in-plane
rotational DOFs of a vibrating surface.

3.14.2.2 Long straight-line scans (linear ODS measurement)
The concept of a long scan is similar to that of the short scan except
that the order of the displacement pattern that will be measured is
greater than the simple case (first order, z(x,<) = (a0 + oqx^os^i + 0))
and can be generalised to a polynomial form:
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Fig. 3.54 Alternative scans to measure vibration patterns
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z(x, t) = (a0 + a]X + a2x2 + a^x^ ...)cos(cot + 9) (3.27)

(In this example, it is assumed for clarity that the vibration pattern is
‘real’ in the sense that all points are vibrating with the same phase: the
more general case where the vibration pattern is complex can also be
addressed by this same approach, but by using Real Part and
Imaginary Part expressions in place of the mono-phase version shown
in equation (3.27).) The structure is vibrated with a steady-state
harmonic excitation at frequency, co, and the LDV transducer is scanned
along the designated line in a sine wave, at frequency, Q, so that
x = X sin Qi . The output signal from the LDV will therefore be an
amplitude-modulated sine wave that can be described by:

u(t) = V’ (an cos(coi + cpn )cosn Qi) (3.28)

It should be noted that the LDV signal may also be represented as a
spatial Fourier series if a uniform-rate scan is used, but in that case,
because of the signal discontinuities at the ends of the scan, there is
inevitably an infinite series of Fourier coefficients, and so a sinusoidal
scan is preferred. If this output signal is subjected to a conventional
Fourier spectral analysis, with the condition that the duration of the
analysed time-record is synchronised with the scan length, then a
spectrum will be obtained which contains several spectral components,
Ao, A^ A2,..., A_] , A_2 ,..., these being in a definite pattern based on
the central excitation frequency and a series of sidebands as follows:

co, (co + Q), (co + 2Q),..., (co - Q), (co - 2Q),... (3.29)

It can be shown (see Reference [30]) that there is a simple relationship
between the spectral coefficients, Ao, A] , A2,..., and the coefficients,
a0 , a^, a2,..., in the polynomial expression that describes the
vibration pattern along the scanned line (the operating deflection
shape) which takes the following form:

where
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'i 0 -2 0 2 0 ...
0 2 0 -6 0 10 ...
0 0 4 0 -16 0 ...
0 0 0 8 0 -40 ... (3.30)
0 0 0 0 16 0 ...
0 0 0 0 0 32 ...

Special measures, other than simple application of the FFT, are
necessary to derive phase, or real and imaginary parts, for the sideband
components. An example of applying this procedure to measurement of
the ODS along an edge of a rectangular cantilever plate at a fixed
frequency of vibration, and for a specific point excitation, is shown in
Fig. 3.55(a). It should be noted that this approach yields the vibration
pattern as a continuous function of position, instead of the usual series
of discrete measured points that result from conventional modal test
procedures. One advantage of this result is the possibility of obtaining
derivatives of this function (to reveal slopes or curvatures), a process
which is notoriously unreliable when using discrete points. However,
there is a limitation to be tolerated and that derives from the ever¬
present speckle noise problem which effectively limits the number of
spectral lines that can be measured above the background noise which
affects the entire spectrum.

An alternative to this method of measuring the ODS pattern is
simply to perform an analogue demodulation of the output signal from
the LDV. This can be done using a uniform scan to reveal a measure of
the ODS, again as a continuous function of distance along the scan, but
this time in discrete format rather than as a continuous series — see
Fig. 3.55(b). The demodulation process works even if the ODS is
discontinuous, in which case the sine-scan polynomial process will be
inaccurate.

3.14.3 Circular Scans with the SLDV
In much the same way that we can make short or long straight line
scans, so also is it possible to make circular scans of varying radii by
simultaneously scanning in both the x- and y-directions with the SLDV
mirrors. If the mirrors are driven with sine and cosine waves at the
same scan frequency and with the same scan length, then a circular
scan will be produced and this is useful for a number of similar
applications.
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Fig. 3.55 Measurement of operating deflection shape (ODS) on plate using
SLDV.
(a) Spectral analysis of measured signal; (b) Demodulation of
measured signal

3.14.3.1 Small-radius scans (for 3DOF FRF measurement)
First, we can note that the small-radius scan has already been
introduced in Section 3.10.3 as a means of measuring RDOF data. In
fact, the use of a small circular scan centred on a point on a vibrating
structure leads directly to a 3DOF measurement which includes the
responses in the z, 0X and 0y directions from a single measurement
and thus to three FRFs referred to the single point of excitation
(wherever that may have been applied).
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3.14.3.2 Large-radius scans (for ODS measurements)
The use of the large-radius scan extends the application of the straight-
line scan discussed above to two dimensions with the particular result
that the ensuing function which describes the operating deflection
shape over the scanned line is one which is made up of trigonometrical
terms in place of the simple polynomial of equation (3.27) This format
is particularly useful for testing the many structures that have a degree
of axisymmetry, such as many of the components that are described in
the earlier section on rotating structures (Section 2.8.4). In these cases,
the predominant mode shape information of interest is that which
describes the nodal diameter components, and that is exactly the
information that is contained in the terms in the trigonometrical
expression provided by a circular scan. A good example of this feature is
illustrated in the measurements made on a radial-flow turbomachine
impeller shown in Fig. 3.56. The first plot, Fig. 3.56(a), shows a point
FRF made on the rim of the impeller; the second and third plots,
Figs. 3.56(b) and (c), show the resulting Fourier analyses of the LDV
signal obtained from a circular scan at each of two of the many
resonances evident in the FRF plot — at 2138 Hz and 2740 Hz,
respectively. It can be shown that, in the event of the scan encountering
an n ND mode, the spectral analysis of a time record produced by the
SLDV from a single circular scan (at frequency Q) around the periphery
of the impeller will contain components at (co - nQ) and (co + nQ) only.
Thus we can conclude from the illustrations in Figs. 3.56(b) and (c) that
these two resonances suggest mode shapes of 4 ND and a combination
of 9 and 10 ND, respectively. The measurement revealing this result
took a fraction of the time that would normally be required to measure
a sufficient number of points around the rim for a subsequent Fourier
analysis to reveal the underlying nodal diameter components.

Furthermore, the possibility of other, higher-order, terms in the
mode shape is quickly eliminated by the scan, although much less easily
so by the conventional discrete-point approach.
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Fig. 3.56 Measurement of nodal diameter patterns on axisymmetric
impeller structure.
(a) Point FRF; (b) Mode 1; (c) Mode 2

3.14.3.3 Conical scan (triaxial FRF measurement)
A variant on the circular scan is the conical scan, made using a short¬
focus lens positioned between the LDV and the test structure, and
focused at the point of interest on that structure, as shown in
Fig. 3.57(a). With this method, a single scan is capable of yielding the
three translational response DOFs (x, y, z) at the measurement point,
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SHORT

Fig. 3.57 Triaxial measurement at a point using an SLDV.
(a) Conical scan; (b) Circular scan with mirror

thereby providing three FRFs referred to the single point excitation
which is assumed (here) as being the source of the steady-state
harmonic vibration response.

Two measurements centred on the same point, with conical scan
and a small circular scan (which can be achieved simply by moving the
lens axially), can yield five of the six DOFs at the measurement point.
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An alternative to using the short-focus lens described above is to use
a conical mirror; see Fig, 3.57(b). Conical and circular scans may then
be obtained with the same setup merely by adjusting the scan radius.

3.14.4 Area Scanning with the SLDV (ODS Measurements of
Two-dimensional Surfaces)

It is clear that a more general version of the circular scan is one in
which the two scanning axes are driven at different frequencies to each
other so as to trace out a moving Lissajou-type of pattern across the
scanned surface: here, the two scan rates are different to each other and
not related by a simple multiple. In this way, a whole area can be
scanned in a relatively short time and a two-dimensional version of the
polynomial expression above (equation (3.27)) can be derived. One of the
most effective two-dimensional scans has been found to be one in which
the scan rate along one axis is much slower than that along the other.
Such a scan is illustrated, in Fig. 3.58(a) and a typical result obtained by
spectral analysis of a measurement on a rectangular plate, vibrating in
a steady-state harmonic manner is shown in Fig. 3.58(b). In this
spectrum, a complex pattern based on two series of sidebands can be
seen, each series being related to one of the two scan directions. In this
spectrum, each spectral component is identified by a double index,
e.g. Ai 2 , and these components can be converted to a corresponding set
of two-dimensional polynomial coefficients, a^j , using the same
transformation matrix as before, but in the double format:

where

z(x,y) = a0 0 + a10x + a20x2 ...+ a^xy + a12xy2 ... (3.31)

Further details of these advanced techniques can be found in the
referenced literature [30], but it can be noted here that most of the
methods summarised above are applicable with any type of scanning
transducer: at the present time, the scanning LDV is the most
immediately available option but it is conceivable that other devices
based on different transduction techniques, and perhaps less vulnerable
to noise the limitations of the LDV, may be developed in the future.
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Fig. 3.58 Area scan for 2D mode shape measurement.
(a) Scan profile; (b) Spectrum of SLDV signal
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CHAPTER 4

Modal Parameter Extraction
(Modal Analysis) Methods

4,1 INTRODUCTION
4.1.1 Introduction to the Concept of Modal Analysis
Having dealt with the first phase of any modal test — that of measuring
the raw data from which the desired mathematical model is to be
derived — we now turn our attention to the various stages of analysis
which must be undertaken in order to achieve the objective of
constructing a model. A major part of this analysis consists of curve¬
fitting a theoretical expression for an individual FRF (as developed in
Chapter 2) to the actual measured data obtained by one of the methods
discussed in Chapter 3. The present chapter describes some of the many
procedures which are available for this task and attempts to explain
their various advantages and limitations: as with all other aspects of
the subject, no single method is ‘best’ for all cases.

In increasing complexity, the methods discussed involve the
analysis, or curve-fitting, first of part of a single FRF curve, then of a
complete curve encompassing several resonances and, finally, of a set of
many FRF plots all on the same structure. In every case, however, the
task undertaken is basically the same: to find the coefficients in a
theoretical expression for the frequency response function which then
most closely matches the measured data. This task is most readily
tackled by using the partial fraction series-form for the FRF, as
developed in Sections 2.4 to 2.7 for different types of system, although
some methods use the rational fraction version and yet others prefer to
work in the time domain, based on the impulse response function. The
particular advantage of the series-form FRF approach is that the
coefficients thus determined are directly related to the modal properties
of the system under test, and these are generally the very parameters
that are sought.

This phase of the modal test procedure is often referred to as ‘modal
parameter extraction’, or ‘modal analysis’ because it is the
corresponding stage in an experimental study to that called modal
analysis in a theoretical study. In both approaches, modal analysis
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leads to the derivation of the system’s modal properties. However, it
should be noted that the two processes themselves are quite different:
one is a curve-fitting procedure while the other is a root-finding or
eigensolution exercise. The various methods used for experimental
modal analysis tend to divide into two philosophies: one in which the
analysis is essentially automatic — FRF data are supplied as input data
and modal parameters are extracted without further involvement of the
user — and a second one which is much more interactive, in which the
user is expected to participate in various decisions throughout the
analysis. Although, theoretically, there should be no need for this latter
course of action, it is often found expedient in the light of the imperfect
and incomplete data which are inevitably obtained in practical
situations with real and complicated engineering structures.

4.1.2 Types of Modal Analysis
A great many of the current curve-fitting methods operate on the
response characteristics in the frequency domain — i.e. on the
frequency response functions themselves — but there are other
procedures which perform a curve-fit in the time domain. These latter
methods use the fact that the Inverse Fourier Transform of the FRF is
itself another characteristic function of the system — the Impulse
Response Function — which represents the response of the system to a
single unit impulse as excitation (analogous to the single unit-sinusoid
for the FRF). The majority of the following sections are concerned with
modal analysis performed directly on the FRF curves but in later
sections of the chapter we shall discuss this alternative approach to the
problem using the impulse response properties.

Modal analysis methods can be classified into a series of different
groups, and it is convenient to do so in order to summarise the essential
features of each. First of all, it is appropriate to define the domain in
which the analysis is performed:

’ Frequency domain (of FRFs)
• Time domain (of IRFs or response histories)

Next, it is appropriate to consider the frequency range over which each
individual analysis will be performed, and this divides into two
categories, also, depending upon whether a single mode is to be
extracted at a time, or several. These two subgroups are referred to as:

• SDOF methods; and
• MDOF methods, respectively.

A further classification relates to the number of FRFs which are to be
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included in a single analysis (bearing in mind that several similar
analyses may well be undertaken to complete the processing for one
test). There are three different types of FRF data sets, the differences
usually depending upon how the data are collected, or measured, rather
than what the list of contents is. The simplest type of FRF
measurement is referred to as SISO (Single-input, Single-output), and
this describes an individual FRF curve so that an SISO data set is made
up of a set of FRFs which have been measured individually, usually
sequentially. The second type of data set is referred to as SIMO (Single¬
input, Multi-output) and this refers to a set of FRFs which have been
measured simultaneously at several response points, but all under the
same single-point excitation. This describes the FRFs in a column or
row of the FRF matrix. The third category is the MIMO type, (Multi¬
input, Multi-output) in which the responses at several points are
measured simultaneously while the structure is excited at several
points, also simultaneously: this is the standard format for a multi¬
exciter test method.

Bearing these classifications in mind, it can be said that modal
analysis methods can be divided into two types, those which process one
single FRF curve at a time, and those which analyse several curves
simultaneously. These are referred to as:

single-FRF methods; and
multi-FRF methods, which are sometimes (but not universally)
subgrouped into Global methods (which deal with SIMO data sets)
and Polyreference (which deal with MIMO data).

Although, in principle, it is possible to use any method on any type of
data set, it should be noted that the simpler methods (e.g. SDOF,
single-FRF) tend to be very time-consuming for the analyst if applied to
large sets of measured data while the more powerful methods (e.g.
MDOF, Polyreference) may be rather intolerant of the small
inconsistencies present in data amassed by repeated application of the
SISO measurement approach. A degree of matching is necessary
between the quality of the data obtained and the analysis method to be
used.

4.1.3 Difficulties Due to Damping
It should be noted at the outset of a study of this subject that there are
a number of problems to be expected in its application in practice. Many
of these relate to the difficulties (which have already been mentioned)
associated with the reliable modelling of damping effects. In practice,
we are obliged to make certain assumptions about what model is to be
used for the damping effects, and these assumptions must often be
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made at the outset of the modal analysis process and can only be re¬
visited by starting the analysis over again. Sometimes, significant
errors can be incurred in the modal parameter estimates — and not
only in the damping parameters — as a result of a conflict between the
assumed damping behaviour and that which actually occurs in reality.
Naturally, such occurrences must be checked for and remedial action
taken if they are detected. Another feature which sometimes gives rise
to difficulties in modal analysis and which also derives from the
damping modelling is that of real modes and complex modes. In
practice, all modes of practical structures are expected to be complex,
although in the majority of cases such complexity will be very small
and, often, quite negligible. However, there are situations in which
complex modes will exist and they need to be recognised and observed,
especially when the results of a modal analysis are being scrutinised.
These conditions have been discussed in some detail in Chapter 2.

The situation with modal complexity is rather analogous to that
with non-linearity in which it is true to assert that all structures are
likely to be non-linear to some degree — but that in the great majority
of cases the degree of non-linearity, and the extent of the errors it
causes, can be regarded as negligible. Here, also, vigilance is necessary
to detect those few cases where this dismissal is not justified and such a
task is usefully performed when assessing the results of the modal
analysis stage.

4.1.4 Difficulties of Model Order
There is one further problem area which it is worth raising at the
outset, and that concerns the question of model order: exactly how
many modes are there in the measured FRF(s), or at least in the
frequency range being analysed. This question is one of the most
difficult to resolve in many practical situations where a combination of
finite resolution and noise in the measured data combine to make the
issue very unclear, the more so with the apparently-more-powerful
global and polyreference analysis methods. It is a drawback of the
power of many modern modal analysis curve-fitters that they are
capable of fitting an FRF of almost any order (i.e. number of assumed
‘modes’) to most data sets. While some of the modes thus identified are
‘real’ (‘genuine’ is probably a better word here), many others may be
fictitious, or ‘computational’ modes, introduced by the analysis process
in pursuit of the optimum curve-fit which, after all, is the mission that
the numerical algorithm is on. Correct differentiation between genuine
and fictitious modes remains a critical task in many modal tests, and
will be discussed in more detail in those methods which are particularly
sensitive to it.
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4.1.5 Contents of Chapter 4
In this chapter, we shall seek to explain the significance and basis of
the various methods of modal analysis which are in common use, but
shall place less emphasis than in other chapters on the details of the
various methods. The reason for this is that the modal analyst must
rely increasingly on the external provision of the most effective modal
analysis software and can no longer expect to write his/her own
routines, as was the case only a few years ago. The numerical and
computation sophistication of state-of-the-art modal analysis
procedures mean that practical implementation of these methods are
beyond the means of the modal analyst.

However, it is important that the analyst knows how to use the
various methods available, and appreciates the differences embodied in
the different choices. He/she also needs to be well aware of the
assumptions that are made, often implicitly, in the various approaches
so that a proper interpretation can be made of the results obtained in
practice, especially on real practical, imperfect (in the sense of not
necessarily behaving according to the tidy presumptions of the
underlying theory) structures whose behaviour will often not conform
exactly to the prescriptions of the theoretical models.

This chapter thus seeks to guide the user through the maze of
different approaches and to equip him/her with sufficient
understanding and appreciation of the different methods available for
him/her to make an informed choice of which one(s) to use, and an
intelligent interpretation of the results that are provided by that choice.

The chapter starts with a discussion of various means of checking
the reliability of the measured data, for if these are contaminated with
errors, especially of a systematic nature, then much of the time spent in
analysing the curves may be largely wasted. Then the various methods
for extracting the modal parameters of the model, which is deemed to
represent the observe behaviour of the test structure, are reviewed,
starting with the simplest (although not the fastest) and progressing
through successive enhancements to the more powerful and automatic
analysis procedures that provide the basis of much routine modal
analysis today. Methods based on a frequency-domain presentation of
the measured data (FRFs) as well as their time-domain equivalents (the
IRFs) are reviewed. Finally, the question of what happens when
conventional modal analysis is applied to structures whose behaviour is
distinctly non-linear is addressed. This leads to a simple extension of
conventional linear modal analysis methods that can give a first-level
estimation of the level and nature of non-linear components in the
structure.
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4.2 PRELIMINARY CHECKS OF FRF DATA
4.2.1 Visual Checks
Before commencing the modal analysis of any measured FRF data, it is
always prudent to undertake a few preliminary and/or simple checks in
order to ensure that time is not wasted on what subsequently turns out
to be obviously bad data. It is not always possible to ascertain from
visual inspection of an FRF plot whether it is a valid measurement, but
there are certain characteristics which should be observed and these
should be checked as soon as possible after the measurement has been
made.

4.2.1.1 Low-frequency asymptotes
Most of the checks are made using a log-log plot of the modulus of the
measured FRF, whether that be receptance, mobility or — as is usually
the format of the raw measurements — accelerance. The first feature to
be examined is the characteristic at very low frequencies — below the
first resonance, if data extend down that far — since in this region we
should be able to see the behaviour corresponding to the support
conditions chosen for the test. If the structure is grounded (see
Chapter 3), then we should clearly see a stiffness-like characteristic at
low frequencies, appearing as asymptotic to a stiffness line at the lowest
frequencies, and the magnitude of this should correspond to that of the
static stiffness of the structure at the point in question. Conversely, if
the structure has been tested in a free condition, then we should expect
to see a mass-line asymptote in this low frequency range and, here
again, its magnitude may be deduced from purely rigid-body
considerations. Deviations from this expected behaviour may be caused
by the frequency range of measurements not extending low enough to
see the asymptotic trend, or they may indicate that the required
support conditions have not in fact been achieved. In the case of a
freely-supported structure, there will generally be some rigid body
modes at very low frequencies (i.e. considerably lower than the first
flexural mode) and these will tend to interrupt the mass-like asymptotic
trend.

4.2.1.2 High-frequency asymptotes
A second similar check can be made towards the upper end of the
frequency range where it is sometimes found, especially on point
mobility measurements, that the curve becomes asymptotic to a mass
line or, more usually, to a stiffness line. Such a tendency can result in
considerable difficulties for the modal analysis process and reflects a
situation where the excitation is being applied at a point of very high
mass or flexibility. Although not incorrect, the data thus obtained will
often prove difficult to analyse because the various modal parameters to
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be extracted are overwhelmed by the dominant local effects. Such a
situation suggests the use of a different excitation point.

4.2.1.3 Incidence of antiresonances
Another set of checks can be made for systems with relatively clear
resonance and antiresonance characteristics. The first of these is a
check to satisfy the expected incidence of antiresonances (as opposed to
minima) occurring between adjacent resonances. For a point FRF, there
must be an antiresonance after each resonance, while for transfer FRFs
between two points well-separated on the structure, we should expect
more minima than antiresonances. A second check to be made at the
same time, is that the resonance peaks and the antiresonance ‘troughs’
exhibit the same sharpness (on a log-log plot). Failure to do so may well
reflect poor measurement quality, either because of a spectrum
analyser frequency resolution limitation (see Section 3.7) causing blunt
resonances, or because of inadequate vibration levels resulting in poor
definition of the antiresonance regions.

4.2.1.4 Overall shape of FRF skeleton
There is another technique which will be described more fully in the
next chapter that enables an overall check to be made on the relative
positions of the resonances, antiresonances and ambient levels of the
FRF curve. Essentially, it is found that the relative spacing of the
resonance frequencies (R) and the antiresonance frequencies (A) is
related to the general level of the FRF curve, characterised by its
magnitude at points roughly halfway between these two types of
frequency. Fig. 4.1 shows two example mobility plots, one of which
(Fig. 4.1(a)) is mass-dominated and tends to drift downwards with
antiresonances occurring immediately before resonances, while the
other (Fig. 4.1(b)) is of a stiffness-dominated characteristic which
generally drifts upwards and has antiresonances immediately above
resonances. There is a procedure for sketching a simple skeleton of
mass-lines and stiffness-lines through an FRF curve which confirms
whether or not the R and A frequencies are consistent with the general
level of the curve: the skeleton should pass through the ‘middle’ of the
actual FRF plot. Fig. 4.1(c) shows a sketch of an apparently plausible
FRF which does not satisfy the skeleton check. This may be because of
poor data or because the parameter plotted is not in fact that expected
(mobility, in this case) but a different format.

4.2.1.5 Nyquist plot inspection
Finally, at a more detailed level, we can assess the quality of the
measured data again at the stage of plotting the FRF data in a Nyquist
format. Here, each resonance region is expected to trace out at least
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(b)

part of a circular arc, the extent of which depends largely on the
interaction between adjacent modes. For a system with well-separated
modes, it is to be expected that each resonance will generate the major
part of a circle but as the modal interference — or ‘overlap’ — increases,
with closer modes or greater damping levels, it is to be expected that
only small segments — perhaps 45° or 60° — will be identifiable.
However, within these bounds, the Nyquist plot should ideally exhibit a
smooth curve and failure to do so may be an indication of a poor
measurement technique, often related to the use of the analyser.

Fig.4.1 Mobility skeletons.
(a) Mass-dominated characteristics; (b) Stiffness-dominated
characteristics; (c) Anomalous characteristics
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4.2.2 Assessment of Multiple-FRF Data Set using SVD
There are some much more detailed quality assessment checks possible
which have become available in recent years as some of the many
applications which have been found for the Singular Value
Decomposition (SVD). These methods are appropriate for situations
where several FRFs have been acquired, sometimes from a single
excitation or reference DOF (SIMO data) and other times for data from
several references (MIMO data). As mentioned elsewhere in this book,
the SVD has proved to be a very useful tool in several aspects of modal
testing, and in particular in matters pertaining to the quality,
reliability and order of the data we have acquired in our measurements
and intend to use in our analysis processes. The first method which is
outlined here is described in more detail in [40] and it may be adapted
and extended in the foreseeable future as the basic concept becomes
more established and the results of the process and their interpretation
become more widespread and more familiar. The method is relatively
simple to apply: the set of FRFs which are to be assessed are stored in a
series of vectors, {H^(o)}, each of which contains the values for one
FRF at all measured frequencies, ® = <o1,co2, These vectors are
assembled into a matrix:

^hxnp = ...{7/„/®)}m] (4.1)

where n and p represent the maximum number of measured DOFs
and the number of excitation points, respectively, and L represents the
number of frequencies at which the FRF data are defined.

Then, an SVD is performed on the matrix, [4], and computing
three matrices, [C/]Lx/ , [VJnpxnp and Pluwip > as normal for this type of
process, with the relationship:

[^np =[^xz [F]Up (4-2)

The first-level interpretation of these results is as follows:

• the singular values of [L] , gj , cr2 , • > aw describe the amplitude
information and the number of non-zero singular values represents
the order of the system (i.e. the number of independent modes of
vibration which effectively contribute to the measured FRFs);

• the columns of [17] represent the frequency distribution of these
amplitudes; and

• the columns of [V] represent their spatial distribution.

A further stage of analysis is possible, and that is to create a sub-factor
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of the decomposition by computing a new matrix, [P]£x,ip , which is
referred to as the ‘Principal Response Function (PRF)’ matrix, each
column of which contains a response function corresponding to one of
the original FRFs:

[^lz,xLPlLxnp =^lLxnp (4-3)

It will be seen that these PRFs have similar properties to (and the same
dimensions and units as) the original FRFs, but possess certain
advantages which we can exploit both at this preliminary stage, and
later, during the analysis. Each PRF is, simply, a particular
combination of the original FRFs. As such, each PRF contains all the
essential information in those FRFs including — importantly — the
eigenvalue information in an explicit form (i.e. a modal analysis of any
one of the PRFs will yield the eigenvalue properties for each mode
which is visible on that function).

One example of this form of pre-processing is shown in Fig. 4.2 for
the case of numerically-simulated test data, and another in Fig. 4.3 for
the case of real measured test data. In both cases, a series of three plots
are shown:

(a) the original FRFs, overlaid;
(b) the singular values, or , plotted in descending order of

magnitude; and
(c) the PRFs, overlaid.

The second plot, (b), has the possibility of conveying the true order of
the system because the number of non-zero singular values is equal to
this parameter. In most practical cases, the demarcation between non¬
zero and zero singular values is not sharply-defined, but can often be
inferred from close inspection of the plot. The third plot, (c), is perhaps
the most useful because it shows the genuine modes distinct from the
computational modes. It can be seen that the PRFs tend to fall into two
groups: the most prominent are a set of response functions, each of
which has a small number of dominant peaks (i.e. resonances), while
the second, lower group shows less distinct and clear-cut behaviour. In
fact, the first set represent the physical modes of the system while the
second set, which are generally at a much lower level of response,
represent the noise or computational modes present in the data. In the
limit, it is possible to determine whether the noise present on the data
permits the separation of these two groups of modes from each other, a
requirement which must be satisfied for a successful modal analysis to
be achievable. This is established by the need for a clear gap between
the two sets of functions: if such a gap is present, then it will be
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FRF for numerical model (all 71 FRFs shown)

Singular values for numerical data (only 9 FRFs shown)

Fig. 4.2 FRF and PRF characteristics for numerical model
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FRF for measured data (all 71 FRFs shown)

Singular values for measured data (only 9 FRFs shown)

PRF for measured data

Fig. 4.3 FRF and PRF characteristics for measured data
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possible to extract the properties of the m modes which are active in
the measured responses over the frequency range covered; if not, then it
may be very difficult, if not impossible, to perform a successful modal
parameter extraction. It is important to note here that different results
are obtained from the same original data set if the analysis is
performed over different frequency bands, see Fig. 4.4. From this
example it is seen that there may be distinct advantages of attempting
a modal analysis over a limited frequency range (i.e. using less than the
full frequency range covered by the measurement) in order to be
working with a well-conditioned set of data. Thus, it may be possible to
perform a successful modal analysis on a given set of data by doing so in
several parts rather than in one single run. Furthermore, it may well be
found that by using the PRF curves, instead of the FRFs, a simpler
modal analysis is possible for the global properties (the eigenvalues) as
a result of the dominance in each PRF of just one or two modes.

Fig. 4.4 PRF characteristics for different frequency ranges

While the ultimate interpretation goal of this approach is to
determine whether or not the measured data are of adequate quality for
the modal analysis process that will be applied to them, it may also
offer the advantage of a pre-analysis processing that renders the
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measured data more amenable to this important step.

4.2.3.2 Complex mode indicator function (CMIF)
One of the most widely-used of these indicator functions is the CMIF, or
complex mode indicator function, which is defined simply by the SVD of
the FRF (sub) matrix. This decomposition, which is defined as:

4.2.3 Mode Indicator Functions (MIFs)
4.2.3.1 General
A more complex version of the above idea has been developed in the
form of Mode Indicator Functions (MIFs) which are intended for sets of
FRF data from multiple references. Such data are available from
multiple-excitation measurements such as MPR or MPSS tests, or from
multi-reference impact tests (MRIT) and typically consist of an n x p
matrix where n is a relatively large number of measurement DOFs and
p is the number of excitation or reference DOFs, typically 3 or 4. In
these methods, the frequency-dependent submatrix of FRFs which are
available explicitly is subjected to an eigenvalue or singular value
decomposition analysis which thus yields a small number (3 or 4) of
eigen- or singular values, these also being frequency-dependent. The
different versions of the MIF employ slightly different formulations
which sometimes result in an eigenvalue decomposition and sometimes
in a singular value decomposition, but it should be noted here that the
singular values of a rectangular matrix, [A] , are the square roots of the
eigenvalues of the square matrix, [A] [A]; hence the close connection
between these two types of decomposition.

The original provenance of these mode indicator functions was from
the methods of stepped-sine normal mode testing in which a single or
pure mode is excited by suitable tuning of a number of separate
exciters. These methods rely on guidance as to the optimum selection
and magnitude of the set of forces which must be applied in order to
achieve the single-mode response condition necessary and such
guidance is sought in the form of estimates for the forcing vector, {F}r .
Nowadays, these same techniques can be used to determine the number
of modes present in a given frequency range, to identify repeated
natural frequencies and to pre-process the FRF data prior to modal
analysis.

[7/(0)]^ =[t/(< jF(<<x/7
[cwW]w=

(4.4)

results in singular values and left and right singular vectors, all of
which are frequency-dependent. The actual mode indicator values are
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provided by the squares of the singular values and are usually plotted
as a function of frequency in logarithmic form, as shown in Fig. 4.5,
with natural frequencies indicated by large values of the first CMIF
(the highest of the singular values) and double or multiple modes by
simultaneously large values of two or more CMIF values. Associated
with the CMIF values at each natural frequency, mr , are two vectors,
the left singular vector, {U(ar )}^ , which approximates the mode shape
of that mode, and the right singular vector, {V(cor)}i , which represents
the approximate force pattern necessary to generate a response on that
mode only. (Here, it is assumed that only a single mode exists at
co = : if two modes exist at this same natural frequency, then there
will be two such left vectors and two right vectors which correspond to
the two modes, or combinations of them.)

Fig. 4.5 Complex Mode Indicator Function (CMIF)

In addition to identifying all the significant natural frequencies,
including double or multiple modes, the CMIF can also be used to
generate a set of enhanced FRFs from the formula:

[£F^)L, (4-5)

There is one non-trivial EFRF for each mode, r , the result of which is
an almost SDOF characteristic response function which is then readily
amenable to modal analysis by the simplest of methods. As in the
previous case, these modified FRFs are simply linear combinations of
the original measured data and, as such, contain no more and no less
information than in their original form. However, such an approach
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lends itself to a very reliable extraction of the global (eigenvalue)
properties for the measured FRF data set which can then be re-visited
in a second stage to determine the local (mode shape) properties for all
the measured DOFs.

It should be noted here that an alternative definition for the CMIF
is provided by the eigenvalue decomposition as applied to the given
FRF matrix, in the form:

[^(co)^[^(©^(co)}= ^{F^} (4.6)

where the eigenvalues, kr , are identical to the squares of the singular
values, , above and both are functions of frequency, cd , as before.

4.2.3.3 Other MIFs
A number of other variants on the mode indicator function concept are
also in use. Two are worth mentioning here: the MMIF (or multivariate
MIF) and the RMIF (real MIF). The first of these is a refinement of the
original force appropriation applications and defines the function as a
frequency-dependent eigenvalue decomposition in the following form:

(4.7)

The MMIF consists of the eigenvalues, Pr , which result from the
eigenvalue solution to (4.7) for each frequency, co, and these values are
plotted as a function of frequency, cd , in the form shown in Fig. 4.6,
where it can be seen that the MMIF takes a value between 0 and 1,
with the resonance frequencies now identified by minimum values of
MMIF, instead of the maximum values for the CMIF.

Lastly, in this introduction to the indicator functions in use, we
mention the RMIF, whose definition is a simpler form of the MMIF and
slightly different to that of the CMIF as:

[#^4^}= ^} (4.8)

In this version, natural frequencies are identified by zero crossings of
the RMIF values (the eigenvalues of the solution to (4.8)) in place of the
minima and maxima of the other functions. A full discussion of these
and other MIFs can be found in [41].
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Fig. 4.6 Multivariate Mode Indicator Function (MMIF)

4.3 SDOF MODAL ANALYSIS METHODS
4.3.1 Review of SDOF Modal Analysis Methods
4.3.1.1 General approach
The first type of modal analysis method to be considered here, and to
have been developed in the earliest days of modal testing, is that which
is described as the ‘SDOF approach’. This title does not imply that the
system being modelled is reduced to a single degree of freedom: rather,
that just one resonance is considered at a time, and that each modal
analysis of this type seeks only to extract the properties of one of the
system’s modes. All the modes in the frequency range of interest are
thus analysed, but sequentially, one after the other, rather than
simultaneously as has become commonplace in more recent methods.

There are, of course, limitations to such a simple approach, the
principal one being that very close modes (modes with close natural
frequencies — and ‘close’ must be defined carefully - cannot easily be
separated. This is a restriction which can be minimised by careful
application of the method, although it remains quite a lengthy process
and demanding of the user in its relatively high level of operator
interaction.

There are several implementations of the basic concept of SDOF
analysis, ranging from the simple peak-picking method, through the
classic circle-fit approach to more automatic algorithms such as the
inverse FRF ‘line-fit’ method and the general least-squares methods
developed recently, both of which can be applied in a global sense
(SIMO data) as well as on a single FRF (SISO).
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Notwithstanding the relatively time-consuming nature of these
SDOF methods, and their inherent approximations, they remain
extremely useful tools for the modal test engineer. Their simplicity of
use, and the facility of ‘observing’ the analysis in process, render them
particularly valuable for the preliminary phases of a modal test, and for
situations where rapid estimations for the basic features of the
structure’s behaviour are required. As will be seen in the following
paragraphs, they are amenable to detailed scrutiny of such features as
the linearity of the structure’s behaviour and even to the type of
damping which is present in the test structure. It could even be
advocated that no large-scale modal test should be permitted to proceed
until some preliminary SDOF analyses have been performed on the
first FRF data obtained.

4.3.1.2 The SDOF assumption
Before detailing the actual steps involved in any of the SDOF analysis
methods, it is necessary to examine the assumptions which will be
made and the basis on which the methods are founded. As the name
implies, the method exploits the fact that in the vicinity of a resonance,
the behaviour of most systems is dominated by a single mode.
Algebraically, this means that the magnitude of the FRF is effectively
controlled by one of the terms in the series, that being the one relating
to the mode whose resonance is being observed. We can express the
assumption as follows. From Chapter 2, we have:

N A ;

a jk (“) = X 2
' J—r (4-9a)

co; -co + m.©.5—1 j ' o J

This can be rewritten, without simplification, as:

A , N Ar
i V s Jk

(oj. - a>2 + ix}ral co2 - co2 + rr] vco2
(4.9b)

Now, the SDOF assumption is that for a small range of frequency in the
vicinity of the natural frequency of mode r , the second of the two terms
in (4.9b) is approximately independent of frequency, co, and the
expression for the receptance may be written as:

« jk (“Vco, rAik ! B2 2-2+ jk
COr -co

(4.10)
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Fig. 4.7 FRF Nyquist plots for 4DOF system.
(a) Contribution of local mode; (b) Contribution of other modes;
(c) Complete FRF

This can be illustrated by a specific example, shown in Fig. 4.7. Using a
4DOF system, the receptance properties have been computed in the
immediate vicinity of the second mode and each of the two terms in
equation (4.9b) has been plotted separately, in Figs. 4.7(a) and (b) using
the Nyquist display. Also shown, in Fig. 4.7(c), is the corresponding plot
of the total receptance over the same frequency range. What is clear in
this example is the fact that the first term (that relating to the mode
under examination) varies considerably through the resonance region,
sweeping out the expected circular arc in the Nyquist plot, while the
second term, which includes the combined effects of all the other modes,
is effectively constant through the narrow frequency range covered.
Thus we see from the total receptance plot in Fig. 4.7(c) that this may,
in effect, be treated as a circle with the same properties as the modal
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circle for the specific mode in question but which is displaced from the
origin of the Argand plane by an amount determined by the
contribution of all the other modes. Note that this is not to say that the
other modes are unimportant or negligible — quite the reverse, their
influence can be considerable — but rather that their combined effect
can be represented as a constant term around this resonance. It is also
clear from this discussion, that the subtle differences discussed above
concerning the effect of other modes are almost invisible in the other
plot, that in which the FRF modulus is plotted against frequency, a
result which tends to reduce the effectiveness of performing a modal
analysis on data presented in that format.

4.3.2 SDOF Modal Analysis I — Peak-Amplitude Method
We shall begin our study of the various methods available for analysing
measured FRF data to obtain the described mathematical models of our
test structure by examining the very simplest of SDOF approaches —
the so-called ‘peak-picking’ or ‘peak-amplitude’ method. In this method
it is assumed that all the response can be attributed to the local mode
and that any effects due to the other modes can be ignored. This is a
method which works adequately for structures whose FRF exhibit well-
separated modes which are not so lightly-damped that accurate
measurements at resonance are difficult to obtain but which, on the
other hand, are not so heavily damped that the response at a resonance
is strongly influenced by more than one mode. Although this appears to
limit the applicability of the method, it should be noted that in the more
difficult cases, such an approach can be useful in obtaining initial
estimates to the parameters required, thereby speeding up those of the
more general curve-fitting procedures, described later, which require
starting estimates.

The peak-picking method is applied as follows:

(i) First, individual resonance peaks are detected on the FRF plot
(Fig. 4.8(a)), and the frequency of one of the maximum responses
taken as the natural frequency of that mode (©r).

(ii) Second, the local maximum value of the FRF is noted (| H |) and
the frequency bandwidth of the function for a response level of
|H |/^2 is determined (Aco). The two points thus identified as co^
and coa are the ‘half-power points’: see Fig. 4.8(b).

(iii) The damping of the mode in question can now be estimated from
one of the following formulae (whose derivation is given below in
(4-21)):
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2 2
GJ.- OJ,, Aco
„ 2 =2m, co,

2^=n,
(4.11)

(iv) Last, we may now obtain an estimate for the modal constant of
the mode being analysed by assuming that the total response in
this resonant region is attributed to a single term in the general
FRF series (equation (2.66)). This can be found from the equation

or (4.12a)

Ar = Heo,r]r

It is appropriate now to consider the possible limitations to this method.
First, it must be noted that the estimates of both damping and modal
constant depend heavily on the accuracy of the maximum FRF level,
|H |, and as we have seen in the previous chapter on measurement
techniques, this is not a quantity which is readily measured with great
accuracy. Most of the errors in measurements are concentrated around
the resonance region and particular care must be taken with lightly-
damped structures where the peak value may rely entirely on the
validity of a single point in the FRF spectrum. Also, it is clear that only
real modal constants — and that means real modes, or proportionally-
damped structures — can be deduced by this method.

The second most serious limitation will generally arise because the
single-mode assumption is not strictly applicable. Even with clearly-
separated modes, it is often found that the neighbouring modes do
contribute a noticeable amount to the total response at the resonance of
the mode being analysed. It is to deal with this problem that the more
general circle-fit method, described in the next section, was developed
as a refinement of this current approach. The problem is illustrated in
Figs. 4.8(c) and (d) where a Nyquist type of plot is used to show two
possible FRF characteristics which might equally well give the modulus
plot shown in Fig. 4.8(b). The limitation of the method described above
becomes evident and it will, in the second example, produce an
overestimate of the damping level and an erroneous modal constant.

However, it is possible to adapt the above procedure slightly,
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Fig. 4.8 Peak-amplitude method of modal analysis.
(a) Modulus plot; (b) Resonance detail; (c) Nyquist plot of single
mode — 1; (d) Nyquist plot of single mode — 2; (e) Real part of
single mode plot; (0 Imaginary part of single mode plot
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without involving the curve-fitting processes to be discussed next, by
working with a plot of the Real Part of the receptance FRF, instead of
the modulus plot as shown in Figs. 4.8(a) and (b). Figs. 4.8(e) and (f)
show plots of the Real Part of the receptance detail previously
illustrated in Figs. 4.8(c) and (d). From these it can be seen that the
positions and values of the maximum and minimum values of the plot
yield good estimates of the locations of the half-power points and of the
diameter of the circle in the Nyquist plot. This last quantity is a better
indicator of the maximum magnitude of the single term in the FRF
series upon which the estimate of the modal constant is based, equation
(4.12). Furthermore, a more refined estimate of the natural frequency
itself can be derived from the midway point between the maximum and
minimum on the Imaginary plot: see Figs. 4.8(c) and (d). Thus we can
use

Ar = §MX\ + (4.12b)

4.3.3 SDOF Modal Analysis II — Circle-Fit Method
4.3.3.1 Properties of the modal circle
We shall now examine the slightly more detailed SDOF analysis
method based on circle-fitting FRF plots in the vicinity of resonance. It
was shown in Chapter 2 that for the general SDOF system, a Nyquist
plot of frequency response properties produced circle-like curves and
that, if the appropriate parameter were chosen for the type of damping
model, this would produce an exact circle. Further, we saw in the later
sections concerned with MDOF systems that these also produce Nyquist
plots of FRF data which include sections of near-circular arcs
corresponding to the regions near the natural frequencies. This
characteristic provides the basis of one of the most important types of
modal analysis, that known widely as ‘the SDOF circle-fit method’.

We shall base our treatment in this section on a system with
structural damping and thus shall be using the receptance form of FRF
data as it is this parameter which produces an exact circle in a Nyquist
plot for the properties of a simple oscillator (see Section 2.2). However,
if it is required to use a model incorporating viscous damping, then it is
the mobility version of the FRF data which should be used. Although
this gives a different general appearance to the diagrams — as they are
rotated by 90° on the complex plane — most of the following analysis
and comments apply equally to that choice. Some of the more
discriminating modal analysis packages offer the choice between the
two types of damping and simply take receptance or mobility data for
the circle-fitting according to the selection.
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Having established the plausibility of observing an individual modal
circle from a (measured) FRF plot, we shall now explore some of the
properties of the modal circle since these provide the means of
extracting the required modal parameters. In the case of a system
assumed to have structural damping, the basic function with which we
are dealing is:

1a(co) = (4.13)

since the only effect of including the modal constant r Ajk is to scale the
size of the circle (by |r^|) and to rotate it (by ArAjk ). A plot of the
quantity a(co) is given in Fig. 4.9. Now, it may be seen that for any
frequency, o , we may write the following relationships:

Im (oc )

tan(90°-y) = tanf
from which we obtain:

2 21co = <or 1 — T]rtan

(4.14a)

(4.14b)

(4.14c)
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If we differentiate equation (4.14c) with respect to 9 , we obtain:

da2
dQ

(4-15)

The reciprocal of this quantity — which is a measure of the rate at
which the locus sweeps around the circular arc — may be seen to reach
a maximum value (maximum sweep rate) when co = <or , the natural
frequency of the mode. This is shown by further differentiation, this
time with respect to frequency:

d da2
dco dQ

when (<d^— <o2)=O (4.16)

It may also be seen from this analysis that an estimate of the damping
is provided by the sweep rate parameter since:

< de
\dco J<o=cor

2 (4.17)

The above property proves useful in analysing MDOF system data
since, in general, it is not known exactly where is the natural
frequency, but if we can examine the relative spacing of the measured
data points around the circular arc near each resonance, then we
should be able to determine its value.

Another valuable result can be obtained by further inspection of this
basic modal circle. Suppose we have two specific points on the circle,
one corresponding to a frequency (<0/, ) below the natural frequency, and
the other to one («>o ) above the natural frequency. Referring to Fig. 4.9,
we can write:

1-^K)2
Hr

(^q/^r)^ 1
hr

(4-18)

and from these two equations we can obtain an expression for the
damping of the mode:
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-q — s£

cd 2(tan(6o/2)+tan(0h/2))
(4-19)

This is an exact expression, and applies for all levels of damping. If we
are concerned with light damping (say, loss factors of less than 2 to 3
per cent), the expression above simplifies to:

2(og-(0b)
cor(tan(6a /2)+ tan(06/2)) (4.20)

and if we further restrict our interest, this time to the two points for
which 0a = 0& - 90° (the half-power points), we obtain the familiar
formula:

_ co2 -Ox
'Ir — (4.21a)

or, if the damping is not light:

_ «2-<01
'Ir ~ o

2(JV
(4.21b)

and this is exact for any level of damping. The final property relates to
the diameter of the circle which, for the quantity specified in equation
(4.13), is given by (l/co^r]r ). When scaled by a modal constant added in
the numerator, the diameter will be

and, as mentioned earlier, the whole circle will be rotated so that the
principal diameter — the one passing through the natural frequency
point — is oriented at an angle arg(rA/k) to the negative Imaginary
axis. (Note that this means that the circle will be in the upper half of
the plane if ^A^ is effectively negative, a situation which cannot arise
for a point measurement but which can for transfer data.)

We shall complete this section by deriving corresponding formulae
to (4.19) to (4.21) for the case of a SDOF system with viscous, rather
than structural, damping. Recalling that in this case we should use
mobility in place of receptance, we can write
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y^= io
tk — co2m)+ i(<Mc)

or

Re(Y) = a2c

(4.22)

T icolZe - <o2mIm(Y) = 5— 1—
\k-<o2mj +(coc)2

From there, and referring to the sketch in Fig. 4.9, we have

-co2m) _ 1- (co/tOr)2
a2c (4.23)

and using the same procedure as before for and coa (points before
and after <or , respectively):

tanf12 J ~

tanf ~3UJ ^aK)
These expressions yield:

(4.24a)

or, for light damping,

(4.24b)

r _ to2 -of
2rar(o>atan(Ga/2)+(obtan(06/2))

©r(tan(eo/2)+tan(96/2))

Finally, selecting the half-power points as those frequencies for which
9a = % = 90°, we have:
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<02 ~ <01
2a»r

(4.24c)

4.3.3.2 Circle-fit analysis procedure
Armed with the above insight into the structure of an FRF plot near
resonance, it is a relatively straightforward matter to devise an analysis
procedure to extract the necessary coefficients in equation (4.11a), and
thence the modal parameters themselves. Basing the following
comments on the case for structural damping, the sequence is:

(i) select points to be used;
(ii) fit circle, calculate quality of fit;
(iii) locate natural frequency, obtain damping estimate;
(iv) calculate multiple damping estimates, and scatter;
(v) determine modal constant modulus and argument.

Step (i) can be made automatic by selecting a fixed number of points on
either side of any identified maximum in the response modulus or it can
be effected by the operator whose judgement may be better able to
discern true modes from spurious perturbations on the plot and to
reject certain suspect data points. The points chosen should not be
influenced to any great extent by the neighbouring modes and,
whenever possible without violating that first rule, should encompass
some 270° of the circle. This is often not possible and a span of less than
180° is more usual, although care should be taken not to limit the range
excessively as this becomes highly sensitive to the accuracy of the few
points used. Not less than six points should be used.

The second step, (ii), can be performed by one of numerous curve¬
fitting routines and consists simply of finding a circle which gives a
least-squares deviation for the points included. Note that there are two
possible criteria which can be applied here: one is that which minimises
the deviations of points from the nearest point on the circle and the
other, which is more accurate, minimises the deviations of the
measured points from where they ought to be on the circle. This latter
condition is more difficult to apply and so it is the former which is more
common. At the end of this process, we have specified the centre and
radius of the circle and have produced a quality factor which is the
mean square deviation of the chosen points from the circle. ‘Errors’ of
the order to 1 to 2 per cent are commonplace and an example of the
process is shown in Fig. 4.10(a).

Step (iii) can be implemented by constructing (here used
metaphorically as the whole process is performed numerically) radial
lines from the circle centre to a succession of points around the
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resonance and by noting the angles they subtend with each other. Then,
the rate of sweep through the region can be estimated and the
frequency at which it reaches a maximum can be deduced. If, as is
usually the case, the frequencies of the points used in this analysis are
spaced at regular intervals (i.e. a linear frequency increment), then this
process can be effected using a finite difference method. Such a
procedure enables one to pinpoint the natural frequency with a
precision of about 10 per cent of the frequency increments between the
points. At the same time, an estimate for the damping is derived using
(4.17) although this will be somewhat less accurate than that for the
natural frequency. Fig. 4.10(b) shows the results from a typical
calculation.

It is interesting to note at this point that other definitions of the
natural frequency are sometimes used. Including:

(a) the frequency of maximum response;
(b) the frequency of maximum imaginary receptance;

(a) Circle-fit; (b) Location of natural frequency; (c) Alternative
definitions; (d) Damping estimates
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O-FIT FOR MODE 2
NAT. FREQUENCY (Hz) = 155.50
% STRUCTURAL DAMPING = 1.8632
MOD CONST MAG (1/Mass) = 0.873E-01
MOD CONST PHASE (o) = 32.752
% RADIUS VARIATION = 5.75
% DAMPING VARIATION = 111.21

Fig. 4.10 Circle-fit modal analysis — 1.
(e) Typical application

These are all indicated on Fig. 4.10(c) and while they seldom make a
significant difference to the value of the natural frequency itself,
selecting the wrong one can have impheations for the values found for
the damping factor and for the modal constant (and thus the mode
shapes).

Next, for step (iv), we are able to compute a set of damping
estimates using every possible combination from our selected data
points of one point below resonance with one above resonance using
equation (4.19). With all these estimates we can either compute the
mean value or we can choose to examine them individually to see
whether there are any particular trends. Ideally, they should all be
identical and so an indication not only of the mean but also of the
deviation of the estimates is useful. If the deviation is less than 4 to 5
per cent, then we have generally succeeded in making a good analysis.
If, however, the scatter is 20 or 30 per cent, there is something
unsatisfactory. If the variations in damping estimate are random, then
the scatter is probably due to measurement errors but if it is
systematic, then it could be caused by various effects (such as poor
experimental set-up, interference from neighbouring modes, non-linear
behaviour, etc.), none of which should, strictly, be averaged out. Thus, if
a large scatter of damping estimates is indicated, a plot of their values
such as that shown in Fig. 4.10(d) should be examined (see
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Section 4.3.3.3, below).
Lastly, step (v) is a relatively simple one in that it remains to

determine the magnitude and argument of the modal constant from the
diameter of the circle, and from its orientation relative to the Real and
Imaginary axes. This calculation is straightforward once the natural
frequency has been located and the damping estimates obtained.

Finally, if it is desired to construct a theoretically-regenerated FRF
plot against which to compare the original measured data, it will be
necessary to determine the contribution to this resonance of the other
modes and that requires simply measuring the distance from the ‘top’ of
the principal diameter to the origin, this quantity being the value of
r Bjk in equation (4.10). Then, using that equation together with the
modal parameters extracted from the circle-fit, it is possible to plot a
curve based on the ‘model’ obtained.

NOTE: if previous estimates for (or and rjr are available, steps (iii)
and (iv) can be omitted, and only the modal constant derived.

A typical circle-fit analysis of some practical data is presented in
Fig. 4.10(e).

4 3.3.3 Interpretation of damping plots
It has been shown how the multiple estimates of damping available
from this approach can be used to obtain an average value for the
damping factor. Indeed, the variation and distribution of the individual
damping estimates, as illustrated by the damping ‘carpet’ plots shown
in Fig. 4.10(c), can serve as a very useful diagnostic of the quality of the
entire analysis. As mentioned earlier, good measured data should lead
to a smooth plot of these damping estimates and any roughness of the
surface can be explained in terms of noise on the original data — see,
for example, Fig. 4.11(a). However, any systematic distortion of the plot
(the surface should be smooth, flat and level) is almost certainly caused
by some form of error in the data, or its analysis, or in the assumed
behaviour of the structure. Thus, leakage errors show up as illustrated
in Fig. 4.11(b); modal analysis errors, such as in the estimate for the
natural frequency, as in Fig. 4.11(c) and non-linearity in the structure’s
behaviour as in Fig. 4.11(d).

It is possible to accumulate quite quickly a record of standard
damping-plot characteristics of structures which are tested frequently,
and the faults which are sometimes observed in their measurement
catalogued, and this readily detected from inspection of the damping
plots produced. They are an effective means of checking the quality of
the measured and analysed data.
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Fig. 4.11 Circle-fit modal analysis — 2: interpretation of damping plots

4.3.4 SDOF Modal Analysis III — Inverse or Line-fit Method
4.3.4.1 Properties of inverse FRF plots
Although the circle-fit method is very widely used, there are alternative
procedures available which work within the same general confines and
assumptions. We shall discuss one here: a direct alternative to the
circle-fit called the ‘Inverse’ or ‘Line-fit’ Method.

The original version of this method used the fact that a function
which generates a circle when plotted in the complex (Nyquist) plane
will, when plotted as a reciprocal, trace out a straight line. Thus, if we
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were to plot the reciprocal of receptance (not dynamic stiffness in the
strict sense) of a SDOF system with structural damping, we would find
that in the Argand diagram it produces a straight line as can be seen
from inspection of the appropriate expressions for a SDOF system:

. . \k — a2m}—i(d')
a(co) = —

\k — a)2mf + d2
(4.25a)

and

—-— = \k -<n2m)+ i(d) (4.25b)
a(co)

Sketches of these two forms of the FRF are shown in Fig. 4.12 and the
procedure which may be used to determine the modal parameters using
the inverse FRF is as follows. First, a least-squares best-fit straight line
is constructed through the data points and an estimate for the damping
parameter is immediately available from the intercept of the line with
the Imaginary axis. Furthermore, an indication of the reliability of that
estimate may be gained from the nature of the deviations of the data
points from the line itself — if these are randomly scattered above and
below the line, then we probably have typical experimental errors, but
if they deviate in a systematic fashion, such as by being closer to a
curve than a straight line, or to a line of other than zero slope, then
there is a source of bias in the data which should be investigated before
making further use of the results.

Then, a second and independent least-squares operation is
performed, this time on the deviation between the Real part of the
measured data points and that of the theoretical model. Resulting from
this, we obtain estimates for the mass and stiffness parameters in the
theoretical model to complete the description.

It should be noted that this approach is best suited to systems with
real modes (effectively assumed in the analysis) and to relatively well-
separated modes as corrective action is required in the event that the
FRF is not locally dominated by a single mode. However, the method is
relatively insensitive to whether or not data are measured exactly at
the natural frequency (at which point the Real part of the inverse
receptance is zero) as the straight line can readily be obtained with data
points which are well away from resonance.

4.3.4.2 General inverse analysis method
More recently, another application of the same basic concept was
developed which has led to a robust and simple SDOF modal analysis
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Fig.4.12 Standard and inverse FRF plots
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approach which is found to be more usable than the circle-fit method
while retaining its essential features, including the diagnostic potential
of multiple estimates. This method is the ‘Line-fit’ method of the title
and is summarised below.

In this version, use is made of the inverse FRF (HJ^ (®)) when
plotted in a different way to that just described: two plots are
presented, one of the Real Part of (HJ^®)) vs. (frequency,®)2, and the
other of the Imaginary Part of (HJ^(®)) vs. (frequency,®)2. It has
already been shown that if a purely SDOF system FRF is plotted in this
way, then both plots demonstrate straight lines, and separately reveal
useful information about the mass, stiffness and damping properties of
the measured system, including an indication as to whether the
damping is structural (Imaginary Part constant with frequency, m ) or
viscous (Imaginary Part linear with frequency, ® ).

However, this simplicity of form is not present when the FRF data
contain the effects of more than a single mode, as is usually the case,
because it can readily be seen that, although the inverse of the FRF for
a truly SDOF system has the advantageous properties that result in
this feature of the plots:

(Hjk (m)) = (k - ®2m) + i(®c or d)

the corresponding inverse in the case of more than one mode present is
not similarly convenient:

(®)) = — —S{(& - ®2m) + i(&c or d)}

which means that in reciprocal form the modal series does not apply:

(H;2 (m))*V ?
{{k - + i(rac or d)}

Thus it becomes clear that if the early advantages of the inverse plot
are to be available in the more general case, then some modification to
the basic formulation must be found. This is done as follows.

We start with the basic formula for SDOF analysis, quoted earlier in
(4.2), which is:

r jk
® Jk (®)®=co = 2 2ar -ra + zr|r®r
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and we note that the presence of the rBjk term — the contribution of
modes other than the one of current interest — ‘spoils’ the inverse plot.
The trick is to define a new FRF term, a'^(o)) , which is simply the
difference between the actual FRF and the value of the FRF at one
fixed frequency in the range of interest - a frequency which is referred
to as the ‘fixing frequency’ and which is denoted by Q . Thus we have:

a}A(a>) = a^(®)-a^(Q)

from which the inverse FRF parameter that we shall use for the modal
analysis, A(co) , can be defined:

A(co) = (co2 -Q2)/a^(co)
= Re(A) + ilm(A)

It can be seen that these two quantities, Re(A(co)) and Im(A(co)) , are
simply related to the variable frequency, co , as:

9 9Re(A) = m.R(o + ; Im(A) = zn/co + cj

and, also, that

mR =aR^2 -<o^)-Zzr(co^T]r);
mi = ~bR(Q2 -^2)-ar(a2r\r);
rAjk = aR+ibr

So, the first step of our analysis procedure can be made, as follows:

(i) using the FRF data measured in the vicinity of the resonance, cor,
choose one of the measured points as the datum (or ‘fixing’ )
frequency, Q j , and then calculate the possible values of A(co)
using the remaining measured data points;

(ii) plot these values on Re vs. (frequency)2 and Im vs. (frequency)2
plots and compute the best-fit straight line in each case so as to
determine and for that particular value of the
fixing frequency, Qj .

Typical results of this stage of the process using data from a practical
example are shown in Fig. 4.13, where the essentially-straight line
characteristic of both Real and Imaginary Parts can be seen.
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Now, it can be shown that both these straight-line slop.es, m,R and
mi , are simple functions of Q and that we can write:

L-FIT FOR MODE 2
NAT. FREQUENCY (Hz) = 155.56
% STRUCTURAL DAMPING = 2.3889
MOD CONST MAG (1/Mass) = 0.117
MOD CONST PHASE (o) = 4.599

Fig. 4.13 Line-fit modal analysis: typical results.
(a) Plots of Re(A(o)) and Im(A(co)) ; (b) Slopes from (a)

q n

mR = nR& + dR and mj = n/Q + dj

where

nR=ar > nI =
dR=-br(&r^r)-ar(0ir) ; dI =&r(®r)-ar(®rnr)

Now, let:

p = nj I nR . and q = dj I dR

and, noting that

(4.26)



324

= (q-p) .
r (i+pq)

r (I + P2)^ br = —arp

ra2= dR
Olr-iXR

(4.27)

we now have sufficient information to extract estimates for the four
parameters for the resonance which has been analysed:

co,., T],, and rAjk =ar +ibr

using the second stage of our process, which consists of the following
steps:

(iii) plot graphs of m^(Q) vs. Q and of vs. Q , using the
results from the repeated application of step (i), above, each time
using a different one of the measurement points as the fixing
frequency, Qy ;

(iv) determine the slopes of the best-fit straight lines through these
two plots, and nj ,and their intercepts with the vertical axis,
d^ and dj ;

(v) using these four quantities and the formulae in equation (4.27),
determine the four modal parameters required for that mode.

The FRF data shown earlier in Fig. 4.13(a) and relating to the first part
of the analysis are again used to illustrate this second part, in
Fig. 4.13(b). Once again, the straight-line feature of each of the plots
can be seen and the modal parameters deduced from the second level of
curve-fitting are shown at the foot of the graphs. This is a typical line-
fit analysis.

Certain features of the line-fit type of modal analysis are worth
mentioning. First is the fact that the straight-line curve-fitting which is
required is simpler and quicker than that based on circles or more
complicated forms. Second, the straight-line feature means that it is
easier to spot discrepancies from the expected form, such as poor data,
inappropriate damping models or non-linear behaviour. Third, the
inverse nature of the functions being used mean that the most
important data in determining the best-fit lines are those points which
are furthest from the resonance point. This is significant because, as we
have seen in the earlier chapters, the points closest to resonance are
often the most difficult to measure accurately: both the exciter¬
structure interaction dynamics, and various signal processing effects,
combine to make the resonance region the most vulnerable to error.
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Thus, a modal analysis method which places more weight to points
slightly away from the resonance region is likely to be less sensitive to
these measurement difficulties.

4.3.5 Other SDOF Methods
We have now introduced the main SDOF methods in current use but it
is worth mentioning another approach which is sometimes used in
certain circumstances and, anyway, will find a role in our subsequent
discussion of modal analysis on slightly non-linear systems. As we have
seen, each resonance is defined by four modal parameters:

co , ri., and rAik=ar+ibrr ' * r J 1 /A f i

and since each individual FRF data point contains three quantities:

ro,Re(H(®)),Im(H(®))

one might imagine that the four modal parameters could possibly be
determined using as few as two complex FRF data points. This idea
forms the basis of another SDOF modal analysis approach, although
because of its sensitivity to errors in the data, it must be used with
considerable caution. The usual application is to take several pairs of
FRF data points, usually each pair straddling the resonance, and to
compute the modal parameters using the limited data provided by the
two points. This is repeated several times and the resulting estimates of
the modal parameters averaged to yield a mean value for each. If the
measured FRF data are of very high quality, then this can be a useful
and valid approach, but if not, then one of the preceding methods —
each of which take advantage of the over-determination of the actual
problem — is to be recommended.

4.3.6 Residuals
4.3.6.1 Concept of residual terms
At this point we need to introduce the concept of residual terms,
necessary in the modal analysis process to take account of those modes
which we do not analyse directly but which nevertheless exist and have
an influence on the FRF data we use. Usually, it is necessary to limit
the frequency range of measurement and/or analysis for practical
reasons and this inevitably means that we cannot identify the
properties of modes which exist outside this range. However, the
influence of such modes is present in the measured FRF data and we
must take account of it somehow. (Note: it should be observed that the
topic discussed here is not related to the ‘residue’ quantities used in
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some analyses as an alternative definition to our ‘modal constant’.)
The first occasion on which the residual problem is encountered is

generally at the end of the analysis of a single FRF curve, such as by
the repeated application of an SDOF curve-fit to each of the resonances
in turn until all modes visible on the plot have been identified. At this
point, it is often desired to construct a ‘theoretical’ curve, based on the
modal parameters extracted from the measured data, and to overlay
this on the original measured data to assess the success of the curve-fit
process. (A more appropriate description of the calculated curve is
‘regenerated’, since it does not come from a purely theoretical analysis
of the system, and we shall use this terminology subsequently.) When
the regenerated curve is compared with the original measurements, the
result is often disappointing, as illustrated in Fig. 4.14(a). However, by
the inclusion of two simple extra terms — the ‘residuals’ — the modified
regenerated curve is seen to correlate very well with the original
experimental data, as shown in Fig. 4.14(b). The origin of these residual
terms may be explained as follows.

If we regenerate an FRF curve from the modal parameters we have
extracted from the measured data, we shall use a formula of the type:

m2

r=m1

rAjk
2 • 2

-CO +ZT|r(Dr
(4.28)

in which we have shown the limits in the modal series as and m2 to
reflect the fact that, in general, we do not always start below the first
mode (r = l) and we seldom continue to the highest mode (r = N).
However, just because we choose to limit our frequency range of
measurement and analysis does not mean that the measured FRF data
is unaffected by modes which he outside this range. Indeed, the
equation which most closely represents the measured data is:

N A ,

2 2“cor -co +zr|r(o.
(4.29a)

which may be rewritten, without loss of generality, as:

(4.29b)

In this equation, we shall refer to the first of the three terms as that for
the ‘low-frequency’ modes; to the third term as that for the ‘high-
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Fig. 4.14 Effects of residual terms on FRF regeneration.
(a) Measured and regenerated without residuals; (b) Measured
and regenerated with residuals; (c) Numerical simulation of
contributions of low-, medium-, and high-frequency modes
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frequency’ modes while the second term is that which relates to the
modes actually identified. Fig. 4.14(c) illustrates plots of typical values
for each of the three terms individually, and the middle one is that
which is computed using only the modal data extracted from the modal
analysis process, such as demonstrated in a particular case in
Fig. 4.14(d). It is usually the case that we are seeking a model of the
structure which is accurate within the frequency range of our tests (it
would be unreasonable to expect to be able to derive one which was
representative beyond the measured frequency range) and so we need
to find a way of correcting the regenerated plot within the central
frequency range to take account of the low-frequency and high-
frequency modes. From the sketch, it may be seen that within the
frequency range of interest, the first term tends to approximate to a
mass-like behaviour, while the third term, for the high-frequency
modes, approximates to a stiffness effect. Thus, we have a basis for the
residual terms and shall rewrite equation (4.29b):

m2

* Kico Mjk
r^jk

- _ .
0)r — CO +H]rcor

(4.30)

where the quantities and are the residual mass and stiffness
for that particular FRF and, it should be noted, for that particular
frequency range (if we extend or limit the range of analysis, the
residual terms will also change).

4.3.6.2 Calculation of residual mass and stiffness terms
The way in which residual terms are calculated is relatively
straightforward and involves an examination of the FRF curve at either
end of the frequency range of interest. First, we compute a few values of
the regenerated FRF curve at the lowest frequencies covered by the
tests, using only the identified modal parameters. Then, by comparing
these values with those from actual measurements, we estimate a mass
residual constant which, when added to the regenerated curve, brings
this closely into line with the measured data. Then, the process is
repeated at the top end of the frequency range, this time seeking a
residual stiffness. Often, the process is more effective if there is an
antiresonance near either end of the frequency range and this is used
as the point of adjustment. The procedure outlined here may need to be
repeated iteratively in case the addition of the stiffness residual term
then upsets the effectiveness of the mass term, and so on, but if the
frequency range encompassed is a decade or greater, such interaction is
generally minor.

Finally, it should be noted that often there is a physical significance
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to the residual terms. If the test structure is freely-supported, and its
rigid body modes are well below the minimum frequency of
measurement, then the low-frequency or mass residual term will be a
direct reflection of the rigid body mass and inertia properties of the
structure and, as such, is amenable to direct computation using simple
dynamics. At the other extreme, the high-frequency residual can
represent the local flexibility at the drive point. It can be seen, from
inspection of the expression (4.29b), that the magnitude of this stiffness
residual will vary according to the type of frequency response function
considered. If we are concerned with a point measurement, then all the
modal constants in the series r = m2,A will be positive, and as the
denominator will always have the same sign, all the contributions from
the high-frequency modes will be additive, resulting in the maximum
possible magnitude for the residual. On the other hand, for a transfer
FRF, we find that the terms in the series will be of varied sign, as well
as magnitude, and so the total expression will tend to be less than for a
point FRF and, in some cases, will tend to be very small, if not
negligible. This characteristic should be borne in mind w'hen computing
residual terms.

4.3.6.3 Residuals as pseudo modes
Sometimes, it is convenient to treat the residual terms as if they were
modes, simply to minimise the complexity of the data base which has to
be stored at the end of each modal analysis. Instead of representing
each residual effect by a constant — a residual mass, or residual
stiffness — each can be represented by a pseudo mode, that is to say a
mass and stiffness quantity for each of the two residuals. For the low-
frequency residual effects, this pseudo mode has a ‘natural frequency’
which is below the lowest frequency on the measured FRF; for the high-
frequency residual effects, that pseudo mode has a ‘natural frequency’
which is above the highest frequency on the measured range. These
pseudo modes can be conveniently included in the list of modes which
have been extracted by modal analysis of that FRF curve and used,
with the genuine modes, to compute the regenerated curve required for
comparison with the measured original. In effect, this is the same as
saying that the low-frequency residual effect is not exactly a straight
mass-line, as depicted in Fig. 4.14(c), nor the high-frequency term a
straight stiffness line, but both have a characteristic curve typical of the
response of a SDOF system away from its natural frequency. The
method of computing these pseudo mode parameters is identical to that
described above for the simpler case where there is just one coefficient
for each term: here there are two, but since each measured FRF point
contains three quantities, both pseudo modes can easily be defined
using the classical two-point correction method described above.
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However, it is customary to supply the residual correction step in the
analysis process with suggested values for the two pseudo modes’
natural frequencies and in this case the two processes become identical:
just one coefficient term to be found for each residual.

In fact, using pseudo modes instead of simple residual mass and
stiffness terms is a more accurate way of representing the out-of-range
modes. There is one warning, however, and that is to point out that
these pseudo modes are not genuine modes and that although they do
represent the out-of-range modes’ contributions to a given FRF, they
cannot be used to deduce the corresponding contributions of these same
modes for any other FRF curve. This is an important point to which we
shall return later.

4.3.7 Refinement of SDOF Modal Analysis Methods
In the circle-fit and other SDOF modal analysis methods discussed
above, an assumption was made that near the resonance under
analysis, the effect of all the other modes could be represented by a
constant. There will be several situations where this assumption is not
strictly valid and where the SDOF analysis will be inadequate as a
result. Such situations will arise whenever there are neighbouring
modes close to the one being analysed: ‘close’ being loosely defined as a
situation where the separation between the natural frequencies of two
adjacent modes is less than the typical damping level, both measured as
percentages. This is often cited as a failing restriction for SDOF
methods. However, by building on the results obtained with a direct
analysis of this type, we can usually remove that restriction and
thereby make a more precise analysis of the data. The means of
introducing this refinement to this important class of analysis method
is as follows.

We can write the following expression for the receptance FRF in the
frequency range of interest:

1 1
KiJK J*

ml A

+"1A
(4.31a)

which we can arrange into two terms as:
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s^jk
!

1 1

.~a>2 -a2 +n] (»2 Kjk a2MjkS—lflY J 3 JK JK.I *r 7
(4.31b)

In the previous methods, the second term was assumed to be a constant
throughout the curve-fit procedure to find the modal parameters for
mode r . However, if we have some (good) estimates for the coefficients
which constitute the second term, for example by having already
completed an SDOF analysis, we may remove the restriction on the
analysis. Suppose we take a set of measured data points around the
resonance at or and denote these as //^(co) and then, at each
frequency for which we have a measured FRF value, we can compute
the magnitude of the second term in (4.31b) and subtract this from the
measurement. The resulting adjusted data points should then conform
to a true single-degree-of-freedom behaviour as demonstrated by:

s^jk
2 2-2-co +!q4.coi

1 1
+ K“k

r ^jk
2 2-2co,. -co (4.32)

and we can use the same technique as before to obtain improved
estimates to the modal parameters for mode r. This procedure —
sometimes referred to as ‘SIM’, referring to the simultaneous
recognition of several modes — can be repeated iteratively for all the
modes in the range of interest as many times as is necessary to obtain
convergence to acceptable answers. It is often found that on ‘normal’
FRF data, where most of the modes are relatively weakly coupled, the
improvement in the modal parameters is quite small — see Fig. 4.15 for
an example — but in cases where there is stronger coupling, the
enhancement can be significant.

4.4 MDOF MODAL ANALYSIS IN THE FREQUENCY
DOMAIN (SISO)

4.4.1 General Approach
There are a number of situations in which the SDOF approach to modal
analysis is simply inadequate or inappropriate and for these there exist



332

Frequency (Hz)

Fig. 4.15 Enhanced SDOF modal analysis method

several alternative methods which may generally be classified as multi-
degree-of-freedom (or MDOF) modal analysis methods. The particular
cases which demand a more elaborate treatment than that afforded by
the SDOF concept are those with closely-coupled modes, where the
single mode approximation is inappropriate, and those with extremely
light damping, for which measurements at resonance are inaccurate
and difficult to obtain. By closely-coupled modes we mean those systems
for which either the natural frequencies are very closely spaced, or
which have relatively heavy damping, or both, in which the response
even at resonance is not dominated by just one mode (or term in the
FRF series). A particular problem arises frequently with structures that
possess modes which have very close natural frequencies, even identical
in some cases, and for these a correct modal analysis can only be
achieved using not only an MDOF approach (simultaneous extraction of
several modes at a time), but also one which analyses several curves at
the same time. These we shall discuss in the next section, confining our
interest here to the first part of this generalisation: namely, to the
simultaneous extraction of several modes’ properties in one calculation.

For these cases, and for all others where a very high degree of
accuracy is demanded, we look to a more exact modal analysis than that
described in the previous sections. However, as a word of caution: we
should be wary of using over-refined numerical analysis procedures on
measured data which itself has a finite accuracy.

There are many individual algorithms available for this task and we
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shall not attempt to describe them all in detail. It will suffice to
distinguish the different approaches and to explain the bases on which
they operate. It is seldom necessary (and is often impossible) for the
modal analyst to have an intimate knowledge of the detailed workings
of the numerical processes but it is important that s/he is aware of the
assumptions which have been made, and of the limitations and
implications. Also, in the happy event that s/he has several different
algorithms at his/her disposal, s/he must always be able to select the
most appropriate for each application.

In this section we shall outline three different methods of
frequency-domain MDOF curve-fitting and shall, as before, sometimes
use the hysteretically-damped system as our example, and other times
the viscous damping model. However, as we engage the more
sophisticated techniques of numerical analysis, we need be less
concerned with the detailed differences between viscous and hysteretic
damping models. Mathematically, the difference is simply that in one
version the imaginary parts of the FRF expression are constant while in
the other (viscous) they are frequency-dependent. The various methods
all share the feature of permitting a curve-fit to the entire FRF
measurement in one step and the three approaches considered here are:

(i) a general approach to multi-mode curve-fitting;
(ii) a method based on the rational fraction FRF formulation, and
(iii) a method particularly suited to very lightly-damped structures.

One final note before we examine the methods in detail: the comments
in Section 4.3.6 concerning residuals apply in exactly the same way to
these cases for MDOF analysis. Indeed, as we are proposing to consider
the entire curve in one step, rather than an isolated mode, it is essential
to incorporate the residual terms from the outset. If we do not do so,
then the modal parameters which result from the modal analysis will
probably be distorted in order to compensate for the influence the out-
of-range modes in the measured data.

4.4.2 Method I: General Curve-Fit Approach: Non-Linear
Least-Squares (NLLS)

Many of the longer-established modal analysis techniques were devised
in the days of less powerful computation facilities than we enjoy today,
and may, as a result, seem somewhat pedestrian by current numerical
analysis standards. However, they often have the advantage that they
permit the user to retain more direct contact with the processes being
used than would be the case in a more powerful, and automatic
algorithm. The secret is to maintain a balance between computational
sophistication on the one hand (which might just be thwarted by the
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relatively poor quality of the input data), and the lengthy and often
tedious practices which involve the user in many of the decisions.

We shall start our study of this important area by describing the
basics of a general MDOF curve-fit philosophy, detailed implementation
of which has been perfected by many workers and made widely
available in the form of the Non-linear Least-squares (NLLS) Method.

We shall denote the individual FRF measured data as:

(4.33a)

while the corresponding ‘theoretical’ values are denoted by

H jk (QJ= H( =Y -+-^ Av (4.33b)

where the coefficients xAjk, 2Ajk, ..., eq , <o2 , hl > h2> and
are all to be determined. We can define an individual error as

where:

(4.34)

and express this as a scalar quantity:

(4.35)

if we further increase the generality by attaching a weighting factor w(
to each frequency point of interest, then the curve-fit process has to
determine the values of the unknown coefficients in (4.33) such that the
total error:

P
E = ^weEe

f=i

(4.36)

is minimised. This is achieved by differentiating the expression in (4.36)
with respect to each unknown in turn, thus generating a set of as many
equations as there are unknowns, each of the form:

— = 0 ; q=lA/k,2Ajk, ,etc.
aq

(4-37)
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Unfortunately, the set of equations thus formed are not linear in many
of the coefficients (all the cos and r]s parameters) and thus cannot be
solved directly. It is from this point that the differing algorithms choose
their individual procedures, making various simplifications and
assumptions in order to contain the otherwise very large computational
task to within reasonable proportions. Most use some form of iterative
solution, some linearise the expressions in order to simplify the problem
and almost all rely heavily on good starting estimates. For further
details the reader is referred to various papers such as [42] and [43]. An
example of a curve-fit carried out using this NLLS method is shown in
Fig. 4.16.

Fig. 4.16 Application of NLLS MDOF modal analysis

4.4.3 Method II: Rational Fraction Polynomial Method (RFP)
The method which has emerged as one of the ‘standard’ frequency¬
domain modal analysis methods is that known as the ‘Rational Fraction
Polynomial’ (or RFP) method. This method is a special version of the
general curve-fitting approach outlined above, but it is based on a
different formulation for the theoretical expression used for the FRF
which employs the rational, rather than the partial, fraction formula:
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W) = L
r=l,N

Ar
(cd2 - co2 + 2i&(arC,r)

(4.38)or

H(co) = (ao + oq(ia) + a2(ico)2 ... + a2^ (ico)2^ )
It will be seen that in this formulation we have adopted the viscous
damping model as this is the norm for this method. Also, we see that in
the rational fraction version, the unknown coefficients which will be
sought from the curve-fitting process are not the modal properties
direct, as is the case in the former, partial fraction, version, but a series
of polynomial coefficients, a0 , a^, ..., a2jy , b0 , by, b2N~i, which
are clearly related to the modal parameters but which will require a
further stage of processing before these required quantities are yielded
by the analysis method.

The particular advantage offered by this approach is the possibility
of formulating the curve-fitting problem as a linear set of equations,
thereby making the solution amenable to a direct matrix solution. The
basis of the method is as follows. ~We shall ^denote each of our measured FRF data points by H^,
where and define the error between that measured value
and the corresponding value derived from the curve-fit expression as

e = (4 39a)fe | 77 7 ~7 . 9 77 x 2/711 \ • /

|a0 +a1(M0fc) +a2(^) ..•+a2rn(i®k) )

leading to the modified, but more convenient, version actually used in
the analysis:

e'k = K +b1(i(ok) + b2(icok)2 ... + b2m_1(i(o^)2m“1)
~Hk(a0 +a1(iak)+ a2(ia>k)2 ...+ a2m(iak)2m} (4.39b)

In these expressions, only m modes are included in the theoretical FRF
formula: the true number of modes, N , is actually one of the unknowns
to be determined during the analysis.

If the measured FRF (or that section which is being analysed) is
defined by a total of L individual frequency points, then a set of L
linear equations can be written which relate the measured FRF values,
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Hk (k =\,L) to the unknown polynomial coefficients, aj, b^, ....
and can be expressed in the form:

(4zn+l)xl

FM MLW (4.40)

where all the elements in the constituent matrices and vectors are
known measured quantities. For completeness, the composition of these
matrices is given below, by extending the analysis from equation (4.39b)
above which can be rewritten as follows:

b0
e'k = (j^k) Ofc)2 •■•(i® ft)2™ 4

a0

-^fc|l (i(Dk) (iak)2 ...(iak)2nl (4.41a)

and, when L such equations are combined, in matrix form, we obtain:

Mxl -Mmih{^hmxl M/,x(2m+l) W(2m+l)xl O^b.xl (4.41b)

Solution for the unknown coefficients is achieved by minimising the
error function, J , which is defined by

j = {e*}t{e} (4.42)

and this leads to equation (4.40), above, in which:

[Y]=Re([P*FH; M= Re ; [z]= ReWH ;

{G}= Re^P*r{w}) ; {p}= -Re([T {w}) (4.43)

While it is possible to obtain a solution from this equation, both the
matrices [P] and [T] are found to be ill-conditioned and further
refinement of the method is necessary to obtain a reliable numerical
implementation. Use is generally made of orthogonal polynomials to
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transform the equations to a form which is better conditioned in
numerical application. For further details, the reader is referred to a
more specialist reference, such as [44].

Once the solution has been obtained for the coefficients, a^, aj , ...,
b0 , ..., etc., then the second stage of the modal analysis can be
performed in which the required modal parameters are derived. This is
usually done by solving the two polynomial expressions which form the
numerator and denominator of equation (4.38): the denominator to
obtain the natural frequencies, ar, and damping factors, Qr and the
numerator to determine the complex modal constants, Ar .

All the foregoing analysis presumes that the order of the model, m ,
is known and in general that is not the case. As mentioned earlier, this
quantity is one of the parameters sought from the analysis. What is
often done in methods of this type is to repeat the analysis using
different assumed values for the order, m , and to compare the results
of successive runs. For each run, there will be properties found for as
many modes as prescribed by the chosen model order. Some of these
will be genuine modes while others will be fictitious, or computational,
modes and we need to separate the former from the latter. Various
strategies may be adopted for this important phase of the analysis,
amongst which are included:

• measuring the difference between the original FRF curve and that
regenerated using the modal properties derived;

• measuring the consistency of the various modal parameters for
different model order choices and eliminating those which vary
widely from run to run.

An example of this latter check is shown in Table 4.1 for a simple case
involving measurements around just a single mode of vibration of the
test structure.

Mode Or [Hz] 9r |Ar|fW7 <Ar
1 70.54 (10%) 0.004 (20%) 1.720 (40%) 145.21° (40%)
2 110.03 (0.03%) 0.010 (1%) 0.998 (3%) -176.00° (2%)
3 111.01 (0.02%) 0.009 (1.2%) 1.001 (2.5%) 179.44° (1%)
4 149.83 (7%) 0.007 (15%) 0.401 (53%) 90.32° (57%)

Table 4.1 Averages and variances of modal parameters using RFP

Other checks which are often used to establish the reliability of the
various modal parameter estimates, and thus to identify which modes
to retain and which to reject in the final list, are:
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to run and re-run the analysis for a given model order using
different subsets of the data contained within the chosen frequency
range (i.e. not to use all the data points in one single large
calculation but instead to perform several smaller calculations);
to re-run the analysis for slightly different frequency range
selections all of which embrace the modes of interest.

In all of these checks, interest is concentrated on the repeatability of
the various modal properties: modes which reappear for all choices of
data and model condition are believed to be genuine, while those which
vary from run to run are more likely to have computational features
due to the curve-fitting requirements as their origin, rather than
physical ones which derive from the system’s vibration modes. A further
example of the use of the RFP method is given in Fig. 4.17.

Fig. 4.17 Application of RFP MDOF modal analysis to single resonance

4.4.4 Method III: Lightly-Damped Structures
It is found that some structures do not provide FRF data which respond
very well to the above modal analysis procedures mainly because of
difficulties encountered in acquiring good measurements near
resonance. This problem is met on very lightly-damped structures, such
as is the case for many components of engineering structures when
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treated individually. For such structures, also, it is often the case that
interest is confined to an undamped model of the test structure since
the damping in a complete structural assembly is provided mostly from
the joints and not from the components themselves. Thus, there is scope
for an alternative method of modal analysis which is capable of
providing the required modal properties — in this case, natural
frequencies and (real) modal constants only — using data measured
away from the resonance regions. Such a method, which is very simple
to implement, is described below.

The requirements for the analysis are as follows:

(i) measure the FRF over the frequency range of interest;
(ii) locate the resonances (obvious for this type of structure) and note

the corresponding natural frequencies (which will thus be
measured with an accuracy equal to the frequency resolution of
the analyser);

(iii) select individual FRF measurement data points from as many
frequencies as there are modes, plus two, confining the selection
to points away from resonance;

(iv) using the data thus gathered, compute the modal constants (as
described below);

(v) construct a regenerated curve and compare this with the full set
of measured data points.

The theory behind the method is quite simple and will be presented for
the ideal case of all modes being included in the analysis. If, as
discussed earlier, the frequency range chosen excludes some modes,
these are represented as two additional modes with natural frequencies
supposed to be at zero and at a very high frequency respectively and
two additional FRF data points are taken, usually one from close to
either end of the frequency range covered.

For an effectively undamped system, we may write:

m A ,
(4-44)

which, for a specific value, measured at frequency , can be rewritten
in the form:

2^jk (4.45)
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If we collect a total of (2m + l)('i + l)w. such individual measurements,
these can be expressed by a single equation:

(4.46a)

(4.46b)

from which a solution for the unknown modal constants rAjk in terms
of the measured FRF data points Hjk(fle) and the previously identified
natural frequencies, ar , may be obtained:

(4.47)

An example of the application of the method is shown in Fig. 4.18 for an
aerospace structure while further details of its finer points are
presented in Reference [45]. The performance of the method is found to
depend upon the points chosen for the individual FRF measurements,
and these should generally be distributed throughout the frequency
range and, wherever possible, should include as many antiresonances
as are available. This last feature has the particular advantage that at
an antiresonance, the theoretical model will exhibit a zero response:
hence it is possible to supply such a nil value for the appropriate data in
equation (4.47). In the limit, this means that only one FRF data point
may be required from the measurements, all the others being set to be
identically zero, even though from the measurements on a real
structure their values would be extremely small, but finite.

4.5 GLOBAL MODAL ANALYSIS METHODS IN THE
FREQUENCY DOMAIN

4.5.1 General Approach
In the next chapter we shall be discussing how results from the modal
analysis of several FRF plots for a given structure may be further
processed in order to yield the full modal model. At the present time,
having performed modal analysis on each of the individual frequency
responses, we have found the natural frequencies and damping factors
but we do not yet have the mode shapes explicitly — only combinations
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Fig. 4.18 Example of IDENT modal analysis for a lightly-damped
structure

of the individual eigenvector elements as modal constants. A further
stage of processing is required — here referred to as ‘modelling’ — in
order to combine the various individual results obtained thus far. This
process is described in Chapter 5. However, that phase is somewhat
anticipated by some of the more recent curve-fitting procedures which
are not confined to working with individual FRF curves but which are
capable of performing a multi-curve fit. In other words, they fit several
FRF curves simultaneously, taking due account of the fact that the
properties of all the individual curves are related by being from the
same structure. In simple terms, all FRF plots on a given testpiece
should indicate the same values for natural frequency and damping
factor of each mode. In practice, this does not happen exactly, unless
they are constrained to be identical, and in the next chapter we discuss
ways of dealing with this apparently unsatisfactory result. However, in
a multi-curve fit, the constraints are imposed ab initio and such
methods have the advantage of producing a unique and consistent
model as direct output. One of the first published methods was that by
Goyder [46], using an extension of the frequency-domain method. Other
methods, such as the Ibrahim Time-Domain[47] and one referred to as
‘Polyreference’ [48] are also available.
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Another way in which a set of measured FRF curves may be used
collectively, rather than singly, is by the construction of a single
composite Response Function. We recall that

r=l

r-^Jk
2 2 : 2

(4.48)

and note that if we simply add several such FRFs, thus:

xz^®)=zsf£c--)]=™(®) <4-49>
j k j k V=1 J

The resulting function will have the frequency and damping
characteristics of the structure appearing explicitly, just as does any
individual FRF, although the coefficients (which replace the modal
constants) are now very complicated combinations of the mode shape
elements which depend heavily upon which FRFs have been used for
the summation. Nevertheless, the composite function HH(a) can
provide a useful means of determining a single (average) value for the
natural frequency and damping factor for each mode where the
individual functions would each indicate slightly different values.

As an example, a set of mobilities measured in a practical structure
are shown individually in Fig. 4.19(a) and their summation shown as a
single composite curve in Fig. 4.19(b). The results from analysis of the
separate curves produce estimates for the natural frequency and
damping factor for each mode, and these can be used to derive a mean
value for each modal parameter. Also available are the unique values
for each parameter produced by analysis of the single composite curve.

A similar property applies to the impulse response functions for use
with time-domain, rather than frequency-domain, analysis methods.

Both frequency-domain and time-domain methods are amenable to
the expansion to multi-curve analysis. The techniques are simply
quantitative extensions of their single curve counterparts and have as
disadvantages first, the computation power required is unlikely to be
available in an on-line mini computer, and secondly that there may be
valid reasons why the various FRF curves exhibit slight differences in
their characteristics and it may not always be appropriate to average
out all the variations. Throughout the whole procedure of mobility
measurements and modal analysis, we invoke the averaging process
many times — to smooth rough FRF curves, to reduce the effects of
measurement noise, to remove discrepancies and anomalies between
different modal properties — and we should always remember that
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Fig. 4.19 Set of measured FRFs.
(a) Individual curves; (b) Composite curve
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averaging is a valid means of removing random variations but it is not
an appropriate way of treating systematic variations. We do not always
make that distinction.

4.5.2 Global Rational Fraction Polynomial Method (GRFP)
In an earlier section, the basic RFP method was described in the
context of use for a single FRF curve. This method is well suited to the
more general application to multi-FRF data, both of the SIMO and the
MIMO types. The extension beyond the basic form described above is
achieved by exploiting the fact that if we take several FRFs from the
same structure, then the numerator polynomials will be the same in
every case, and so the number of unknown coefficients in a problem
where there are n measured FRFs and m modes of vibration is of the
order of («. + 1X2/71 +1), while if the same FRFs were to be analysed
individually, instead of in a global approach, the number of coefficients
which would be obtained would be almost twice this number, at
2n(27n + l)and these would require further rationalising (see
Chapter 5). Thus, the global RFP method is simply an extension of that
presented in Section 4.3.4 and further details for those readers wishing
to develop their own codes may be found in specialist references, such
as [44].

4.5.3 Global SVD Method
There have been several implementations of algorithms designed to
provide a global modal analysis in the frequency domain. The interested
reader is referred to more specialist texts for a comprehensive review
but it can be observed that details of these methods are of interest
primarily to code developers, and less so to practitioners of modal
analysis. This latter group have a definite need to appreciate the major
features of such methods, and of the assumptions that may be
embedded in them, but the full details tend to be concerned heavily
with numerical efficiency and this, while of benefit to the modal
analyst, is not a specialisation that he/she needs to acquire directly.

Nevertheless, it is perhaps appropriate to summarise one of these
methods which we shall refer to below as the ‘Global SVD’ method. A
set of FRFs with a single reference (such as are contained within a
column from the complete FRF matrix) can be referred to the
underlying modal model of the structure — assumed to have viscous
damping — by the equation:
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=■

hM'
h2M
Hnk(®\ nxl

-MnxjV [0®~sr )LvxyV {^k }^xl + {^k (®)} (4.50)

where {Rk (co)} is a vector containing the relevant residual terms to
account for the existence of unknown out-of-range modes. Using the
substitution:

{#£ (®)} - fc® - sr )lvx7V k kxi
equation (4.50) can be re-written as:

M®)}* = [®]{^(®)}+ fe(®)}

also (4.51)

{^(®)k = Wk]W®)}+

Next we can write the following expressions:

{AH(co i » [0>]PxN {A^ (coi (4.52)

{aH(®i)}k » [<X>]px2v k MU
If we now consider data at several different frequencies, i = 1, 2, 3, ...,
L, we can write:

[AH^ ]rex£ — k]nxA k kxL
(4.53)

l^k JnxZ, = WixA k^xAT [A£&kxL

Eliminating [a^ ], we can construct an eigenvalue problem:

ftAHfeF-s^AHj^k},. ={0}
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where

(4.54)

If we solve equation (4.54) using the SVD, we can determine the rank of
the FRF matrices and thus the correct number of modes to be identified
(m), leading to the appropriate eigenvalues: sr; r = 1, 2, ..., m. Then, in
order to determine the mode shapes, the modal constants can be
recovered from:

Lxl

HjkM
HjkM

(^1-sj 1

(*®2 -Si)-1

_(^L “Si)"1

(i®l -s2) 1

(i®2 -S2)"1

(j(0 T — Sm ) rv JLxm

lAJk
2Ajk

(4.55)

Using this approach, it is possible to extract a consistent set of
modal parameters for the model whose FRFs have been supplied. By
way of an illustrative example, a case study has been prepared using
actual test data shown in Fig. 4.20(a) measured on a simple but real
structure: the box shown in Fig. 4.20(b). The tables shown below
provide illustration of typical modal analysis results obtained by two
approaches: first, using the SDOF methods described in Section 4.3 and
second, using the global method outlined above. For a few typical modes
in the middle range, the results are shown from both analyses. First, in
Table 4.2(a) are shown the spread of different values obtained for the
natural frequencies and damping factors from some 71 measured FRFs.
The next stage in this type of analysis is to reduce these multiple
estimates to a single value for each modal property and this has been
done in the first two columns of Table 4.2(b). Also shown in this table,
in the right hand pair of columns, are the set of unique modal
properties obtained from a single analysis of all the FRFs using the
global method outlined above.
This latter analysis can generally be performed in a fraction of the time
that it takes to undertake the former. However, there are complications
with the more advanced method in that a decision has to be made as to
the number of modes that should be included in the
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(a)

(b)
Fig. 4.20 Global modal analysis case study.

(a) Set of measured FRFs; (b) Test structure

(a) (a) (b) (a) (a) (b)
Mode SDOF Nat Freq. (Hz)

Min (mean) max
Var. GLOBAL (Hz) SDOF Damping (%)

min (mean) max
Var. GLOBAL

W
1 155.3 (155.91) 156.9 0.20 155.97 2.24 (3.07) 3.79 0.37 3.09
2 171.4 (172.08) 175.5 0.30 172.97 2.58 (3.78) 7.55 0.79 4.30
3 197.7 (203.91)209.4 1.46 203.22 3.72 (6.86) 13.22 2.03 7.20
4 227.7 (233.07) 238.4 1.48 234.31 2.23(4.32) 17.97 2.26 1.70
5 246.9 (249.66) 252.5 0.91 250.31 1.88 (3.24) 5.90 0.75 4.12

Table 4.2 (a) Multiple SDOF, and (b) Global modal analyses



349

analysis (a feature of almost all MDOF analysis procedures). While it
may be very obvious in many cases, such as the example used here,
there are also times when the decision is far less readily arrived at and
recourse to a basic SDOF analysis can often help to confirm this
decision. One advantage that the single-curve, SDOF, analysis methods
offer is an insight into the consistency or reliability of the measured
FRF data. Indications of these qualities are given by the uniformity of
the individual modal estimates across the whole set of measured data.
While the mean values of the SDOF set, and the single values obtained
for the global analysis may appear to be close, the former are
complemented by a variance which indicates the reliability of each of
the mean values: a feature absent from the global estimates.

4.6 MDOF MODAL ANALYSIS IN THE TIME DOMAIN
4.6.1 Introduction
The earliest MDOF modal analysis methods were based on a curve¬
fitting of the system’s response properties presented as time-domain
data, rather than the frequency-domain versions that we have studied
up until now. These early methods are based on an algorithm devised
by the 18th century French mathematician, Prony, and the reference
lists of many early papers in the development of modern modal analysis
methods refer to the originating work by that author, [49]. This family
of methods, known as Complex Exponential Methods, permit a semi¬
automatic analysis of discrete data derived from the inverse Fourier
transform of the FRF: the so-called IRF, or Impulse Response Function
(discussed earlier in Chapter 2). The basic tenet is that any IRF, or
other free vibration response function, can be expressed by a series of
complex exponential components (see equation 2.142), the properties of
each of which contain the eigenvalue and eigenvector properties of one
mode.

Nowadays, the greater convenience of interpretation of the
structure’s response properties in the frequency domain, by inspection
of FRFs rather than the time-domain IRFs, has led to a greater
emphasis and utilisation being made of the frequency domain methods.
Nevertheless, the time-domain methods deserve a place in the legacy of
modal analysis technology and are still used in a number of specialist
applications, especially in cases of structures with very low natural
frequencies for which the time required to acquire several cycles’ worth
of data can become a practical problem.

4.6.2 Complex Exponential Method for Single FRF
4.6.2.1 Theory of method
As mentioned earlier in this chapter, there are a number of alternative
modal analysis methods which work on measured data in a time-
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domain format, rather than the more familiar frequency-domain
versions. Most of the available methods derive from a technique known
as the ‘complex exponential’ method, although there are several
variants and refinements which have been introduced in order to make
the numerical procedures more efficient and suitable for small
computers. The basis of the method, whose principal advantage is that
it does not rely on initial estimates of the modal parameters, is outlined
below.

As the method uses the time-domain version of system response
data, in the form of the Impulse Response Function, its present
application is limited to models incorporating viscous damping only. (It
will be recalled that the hysteretic damping model presents difficulties
for a time-domain analysis.)

Our starting point is the expression for the receptance FRF of a
general MDOF system with viscous damping, which may be written as:

or

2N

r=l o)r + i(<a — o',.)
mJ. =
^'r+N =-0>r (4.56b)

From classical theory, we can obtain the corresponding Impulse
Response Function (IRF) by taking the Inverse Fourier Transform of
the receptance:

2N A.
hjk (0 = 22r jk ; sr = -ar + ia>'r

r=l

(4.57)

If the original FRF has been measured, or obtained, in a discrete form,
and is thus described at each of a number of equally-spaced frequencies,
the resulting IRF (found via the Inverse Fourier Transform of the FRF)
will similarly be described at a corresponding number of equally-spaced
time intervals (Ai =1/A/). We may conveniently define this data set as
follows:
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Ao ,hi ,h2 , ..., hq = h(o),h(kt),h(2At), h(q&t)

From this point, it is convenient to omit the jk subscript and to use an
abbreviated notion, as follows

r Ajk -> Ar ; es'At -> Vr (4.59)

so that equation (4.57) becomes:

2N
(4’60)

r=l

Thus, for the ^h sampiei we have:

2N

he^ArVr <4’61a>
r=l

which, when extended to the full data set of q samples, gives:

ho = -^1 + A2 +...+ A2n
hi = Ft Ai+ V2 A2 + .. .+V2N A2N
h2 =Vi Ai +V2 A2+ ...+V2NA2j^ (4.61b)

hq =V^Ai+V^A2+...+V^n A2N

Provided that the number of sample points q exceeds 4N. this equation
can be used to set up an eigenvalue problem, the solution to which
yields the complex natural frequencies contained in the parameters Vj ,
V2 , etc. via a solution using the Prony method.

Taking (4.61), we now multiply each equation by a coefficient, P, , to
form the following set of equations:

Po^o = Po^i + Po^2 +■■•+ P(M22V
Pl^l = 31^1^1+ Pl A2V2 + ---+ Pl ^22V^2N
P2h2 =^2^1^1 + ?2^2^2 + (4.62)

^qhq =^qAiV^ +pqA2V*+ ...+ pqA2NVqN
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Adding all these equations gives

q 2N( q '

i=0 j=lI /=0 J
(4.63)

What are the coefficients Pj? These are taken to be the coefficients in
the equation

Po +PiV + P2V2+...+ PqV9 =0 (4.64)

for which the roots are , V2, ..., Vq.
We shall seek to find values of the P coefficients in order to

determine the roots of (4.64) — values of Vr — and hence the system
natural frequencies. Now, recall that q is the number of data points
from the Impulse Response Function, while N is the number of degrees
of freedom of the system’s model (constituting N conjugate pairs of
‘modes’). It is now convenient to set these two parameters to the same
value, i.e. to let q = 2N .

Then from (4.64) we can see that

2N
for r=1,21V

i=0
(4.65)

and thus that every term on the right hand side of (4.65) is zero so that

2N
=0

i=0

thus we shall rearrange (4.66) so that

2N-1
Pi hi = ~h2N by setting P27V =1

t=0

and this may be written as

{h0 h2 ... h2N}
[Po

} Pl ’ = -h2N

(4.66)

(4.67)

(4.68)



353

Now, we may repeat the entire process from equation (4.58) to equation
(4.68) using a different set of IRF data points and, further, we may
choose the new data set to overlap considerably with the first set — in
fact, for all but one item — as follows

{^1 h2 P°1^3 Pl =~^2N+1 (4.69)

Successive applications of this procedure lead to a full set of IN
equations:

^0 hi h2 •• ^2N-1 Po h2N
/11 h2 h3 h2N

•

Pl
’ = — •

h2N+l

h2N-l h2N h2N+l .. h4N_2 P2M-1. h4N-l.

or

[M2Nx22V {P}2Nxl = _ ^2Nxl (4.70a)

from which we can obtain the unknown coefficients:

{p}=-M-1H (4.70b)

With these coefficients, we can now use (4.64) to determine the values
Vj , V2, • , V2N from which we obtain the system natural frequencies,
using the relationship

Vr = es^

We may now complete the solution by deriving the corresponding modal
constants, Aj, A2, .... A2;y using equation (4.61). This may be written
as
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or

(4.71)

4.6.2.2 Use of complex exponential method
The foregoing method is generally employed in the following way. An
initial estimate is made for the number of degrees of freedom and the
above mentioned analysis is made. When completed, the modal
properties thus found are used in (4.56) to compute a regenerated FRF
curve which is then compared with the original measured data. At this
stage, the deviation or error between the two curves can be computed.

The whole procedure is then repeated using a different number of
assumed degrees of freedom (27V) and this error again computed. A plot
of error vs. number of DOF will generally produce a result of the form
shown in Fig. 4.21 in which there should be a clearly-defined reduction
in the error as the ‘correct’ number of degrees of freedom is attained.
The inclusion of a larger number than this critical value will cause the
creation of a number of ‘computational’ modes in addition to the
genuine ‘physical’ modes which are of interest. Such additional modes
serve to account for the slight imperfection inevitably present in
measured data and are generally easily identified from the complete list
of Vr and Ar modal properties by their unusually high damping
factors and/or small modal constants.

4.6.3 Global Analysis in the Time Domain
4.6.3.1 Ibrahim time-domain method (ITD)
Directly following the previous section on the complex exponential
method, it is appropriate now to introduce the Ibrahim Time-Domain
(ITD) technique as an example of a multi-curve time-domain analysis,
[47], Although the ITD method is not strictly a curve-fitting procedure
in the sense that all the preceding ones are and, indeed, it would fit
more readily into the next chapter, we shall present it here as a logical
extension of the complex exponential idea.
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Fig. 4.21 Complex exponential modal analysis: evolution of repeated
application

The basic concept of the ITD method is to obtain a unique set of
modal parameters — natural frequencies, damping factors and mode
shapes — from a set of free vibration measurements in a single
analysis. In other words, we shall not be curve-fitting or analysing a
single FRF (or equivalent) at a time, as has been the case hitherto, but
we shall be processing all the measured data at once. Another feature of
the method is that it can be used with any measured free vibration
data, whether or not the excitation forces are available. In the event
that these data are known, then it is possible to derive fully-scaled
eigenvector properties, otherwise only the unsealed mode shapes will be
available along with the modal frequency and damping parameters.
Perhaps the most likely way in which the method will be applied in a
modal testing context is by measuring a set of FRF properties — based
on a selection as prescribed in the next chapter — and then by using
these to obtain a corresponding set of Impulse Response Functions.
These may then be used as the free response data required by the ITD
method with the knowledge that the magnitude of the excitation which
produced them (a unit impulse) is implicit.

The theory of the method is as follows. As before, it is based on the
free vibration solution of a viscously-damped MDOF system and takes
as its starting point the assumption that we may write any individual
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response as:

(4.72)

where i represents the coordinate and j the specific time increment at
which the response is measured; sr is the r^h root or complex
eigenvalue of the system’s characteristic equation (see equation (2.73))
and is the corresponding eigenvector, with being the i^h
element in that vector. At this point, the eigenvectors are unsealed.
Also, we are assuming that the total number of degrees of freedom
available in our model is m. In fact, this is not necessarily the same as
the number of degrees of freedom of the system (A): m is the number of
degrees of freedom which are necessary to represent the measured data
and this may be possible with many less than the full set if, for
example, the response is confined to a limited frequency range, as will
usually be the case in practice.

Now, if we measure the response at several points on the structure
— i = 1, n — and at several instants in time — t = 1, q — then we can
construct a matrix equation of the form:

^1(^1) X^z) ...
*2(h) x2^q)

2V1 ... 2mV1
2V2 ... 2mn'2

or, in simpler form:

H=M[A] (4.73b)

Here,

[x] is an n x q matrix of free response measurements from the
structure, and is known;
[T] is an n x 2m matrix of unknown eigenvector elements; and
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• [A] is a 2m x q matrix depending on the complex eigenvalues (as
yet unknown) and the response measurement times (which are
known).

A second, similar, equation is then formed by using a second set of
measured response data, each item of which relates to a. time which is
exactly Ai later than for the first set. Thus we have:

2mx^+Ai)=£(^r)es'k+At) (4.74a)
r=l

or

; (v/r)= fair (4.74b)

which leads to a second set of equations:

[x]=Ha] (4-75)

Next, remembering that the number of assumed modes (m) is a variable
(we do not yet know how many modes are required to describe the
observed motion), we can arrange that n = 2m, so that the matrices [T]
and [T] are square. It may be seen that these two matrices are closely
related and we can define a matrix [A] , often referred to as the ‘system
matrix’, as:

[A]fa]=[p] (4.76)

From (4.73b) and (4.75), we find

(4.77)

and this provides us with a means of obtaining [A] from the measured
data contained in [x] and [x] . If we have selected the number of time
samples (q) to be identical to the number of measurement points (n),
(which we have now set to be equal to 2m), then [A] can be obtained
directly from equation (4.77). However, it is customary to use more data
than the minimum required by setting q to a value greater than 2m. In
this case, use of equation (4.77) to determine [A] will be via the pseudo¬
inverse process which yields a least-squares solution for the matrix,
using all the data available. In this case, an expression for [A] is:
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(4.78)

Returning now to equation (4.74), we can see that individual columns in
{\|/}r are simply related to the corresponding ones in {y}r by the
relationship:

(4.79)

Thus, using (4.76) we can write:

(4.80)

which will be recognised as a standard form of a set of equations whose
solution is obtained by determining the eigenvalues of the matrix [A] .
It must be noted immediately that these eigenvalues are not the same
as those of the original equations of motion (since equation (4.80) is not
an equation of motion) but they are closely related and we shall see that
it is a straightforward process to extract the system’s natural
frequencies, damping factors and mode shapes from the solution to
equation (4.80). The eigenvalues of [A] are the particular values of
(eSr^) and so if we have as one of these eigenvalues, then we can
determine the corresponding complex natural frequency of the system
(sr) from:

(4.81a)
cT = (a^ +

from which we can derive the natural frequency (®r) and viscous
damping factor (Qr ) using

cor = -In

Corresponding to each eigenvalue there is an eigenvector and this can
be seen to be identical to the mode shape vector for that mode. No
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further processing is required in this case. It should, however, be noted
that the mode shapes thus obtained are generally unsealed and, as
such, are inadequate for regenerating FRF curves. Only if the original
free vibration response data were derived from a FRF-IRF procedure
can scaled (mass-normalised) eigenvectors be obtained.

4.6.3.2 Use of the ITD method
As with other similar procedures, the ITD method requires the user to
make some decisions and judgements concerning which of his/her
measurements to use for the calculation (there will generally be an
excess of measured data). For example, there will often be more
response points than there are genuine modes to be identified, but the
method will always produce one mode per two response points.
Examination of the set of modal properties, and especially the modal
damping factors, will generally indicate which are genuine structural
modes and which are ‘fictitious’ modes caused by noise or other
irregularities in the measured data. Various techniques are proposed
for a systematic examination of the results as the number of assumed
degrees of freedom is increased. Generally, these methods look for a
‘settling down’ of the dominant modes of vibration, or for a marked
reduction in the least-squares error between the original measured data
and that regenerated on the basis of the identified modal properties.
Further details of the method, and its sensitivity to various parameters
are provided in Reference [47],

4.7 MODAL ANALYSIS OF NON-LINEAR STRUCTURES
4.7.1 Introduction
We have seen in earlier chapters that slight nonlinearities in the
system behaviour can result in distortions in the measured FRF curves,
and that the results produced by sinusoidal, random and transient
excitations are all different. At this stage, it is interesting to investigate
the consequences of these effects on the modal analysis process and this
can effectively be achieved by using the SDOF circle- and Une-fit
methods described in Section 4.3. We shall use these methods, and in
particular the graphical display of the damping estimates it produces,
to examine:

(a) theoretically-generated FRF data;
(b) data measured on an analogue computer circuit with controlled

non-linear effects; and
(c) tests on practical built-up structures.

We shall then proceed to develop an extension to the aforementioned
methods in order to provide a first-level non-linear modal analysis
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technique, which provides a practical tool for dealing with this
important class of structure.

4.7.2 Application of Linear Modal Analysis to Non-linear
Structures

4.7.2.1 SDOF modal analysis
For the first case, using theoretical data, we show some results for a
system with cubic stiffness nonlinearity, Fig. 4.22(a), and one with
coulomb friction (as well as viscous) damping, Fig. 4.22(b). In both
cases, a striking and systematic variation in the damping estimates is
seen, with a different trend for each of the two cases. It is clear from
these results that taking the average of several such damping estimates
is pointless — the resulting mean value being heavily dependent upon
which estimates are included rather than on how many.

Turning next to some measured data obtained using the standard
analysis instrumentation (FRA and FFT) but from measurements made
on an analogue computer programmed to behave as a SDOF system
with an added cubic stiffness nonlinearity, Fig. 4.23(a) shows a typical
result obtained from a sinusoidal excitation measurement while
Fig. 4.23(b) gives the corresponding result for narrow band random
excitation set to generate approximately the same vibration level. The
first result clearly demonstrates the trend predicted by theory while the
second one shows no signs of such effects and, indeed, does not suggest
the existence of any non-linearity in the tested system. However, this
result is not unexpected in view of the processing to which the
measured data have been subjected — the formulae used to compute
the FRF assume and rely on superposition — and it is found that the
FRF produced by a DFT analysis is effectively that for a linearisation of
the actual tested system.

The next results are taken from a series of measurements on a
complete built-up structure and refer to a specific mode and to a specific
FRF — mode 3 in mobility y712 — measured using sinusoidal
excitation. The first two plots, in Figs. 4.24(a) and (b) result from
measurements made during two different constant-excitation level tests
(one at a low level and the other at a higer level) and show clear signs of
systematic nonlinearly (although for a more complex form than the
specific cubic stiffness type examined above). The second two examples,
in Figs. 4.24(c) and (d) refer to exactly the same resonance but this time
result from tests made at two different constant-response levels. Here,
the data from both measurements are clearly very linear although the
numerical values of the modal parameters differ for the two different
cases. In this test, the behaviour of the structure has been consciously
linearised, under known conditions, along the lines proposed in the
discussion on measurement techniques, Section 3.11. Thus we see that



361

Fig. 4.22 Linear SDOF modal analysis applied to computed FRF of non¬
linear system.
(a) Cubic stiffness effect; (b) Coulomb friction damping effect

Fig. 4.23 Linear SDOF modal analysis applied to measured FRF on
electronic circuit.
(a) Measured with sinusoidal excitation; (b) Measured with
random excitation
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Fig. 4.24 Linear SDOF modal analysis applied to FRFs measured on
aerospace structure.
(a) Low-level, constant-force; (b) High-level, constant force;
(c) Low-level, constant response; (d) High-level, constant
response
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SDOF analysis methods, properly used, can indicate the existence of
non-linear effects in a test structure excited by sinusoidal excitation (or
equivalent). We have also seen that these effects can be induced or
suppressed by the exercise of input or output level control, the latter
case permitting the construction of a valid linearised model of the
structure.

One final observation on this topic: it has been seen on more than
one occasion that the FRFs from non-linear structures, when analysed
by most SDOF (or other) modal analysis procedures, can reveal a
degree of modal complexity which is much greater than might be
expected, or even justified. Thus, in many situations, a high modal
complexity indicated by the modal analysis process may be an early
indication of non-linearity, and, indeed, may be the first clear evidence
of such behaviour.

4.7.2.2 MDOF modal analysis
The second illustration of the results of using conventional (i.e. linear)
modal analysis procedures on FRF data which has been measured on a
non-linear structure relates to the more general MDOF modal analysis
methods. As with the preceding examples, the effects which are
described below are only encountered if the excitation method used to
measure the FRF data is such that the non-linearities are activated and
influence the shape of the curves. This situation clearly applies if
sinusoidal excitation is used, but is also present when periodic or
transient excitation types are employed. It is not the case, however, if
the excitation is random.

In those situations where a measured FRF is distorted, as is
frequently found for non-linear structures in the region of a resonance
peak, the most likely result of applying an MDOF modal analysis curve¬
fitting procedure is for the analysis to ‘find’ several modes in the
immediate vicinity of the resonance frequency, and to furnish the
properties of these modes as the result of the curve-fit. Such a result is
illustrated in Fig. 4.25 where the FRF measured in the region of one
mode of a non-linear system is shown in (a) together with the curve
regenerated using the best SDOF analysis which could be obtained. The
second plot, (b), shows the measured curve again, but here with the
curve which is regenerated using the results from an MDOF modal
analysis (using the RFP method). Clearly, a better fit is obtained than
for (a) but the cost of this success is the creation of three modes in the
narrow range of the resonance, one of which has negative damping and
is thus unstable! It can be seen that two of the three modes ‘found’ are,
in fact, not genuine physical modes at all but are computation modes
that are created in order to achieve a better fit between the original
data and the regenerated curve. The fact that this can only be achieved
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Fig. 4.25 Linear MDOF modal analysis applied to electronic circuit,
(a) Best single-mode fit; (b) Best-fit result; (c)

by the introduction of such artificial modes, especially ones with
unrealistic properties, is an indication of the conflict between data from
a non-linear behaviour and a model which is entirely linear in its
representation.

The example shown here is typical of many such cases where
conventional modal analysis is used on data from non-linear structures
and so vigilance must be exercised in interpreting the modal properties
indicated by such processes.

4.7.3 Extension of SDOF Line-Fit Modal Analysis Method for
Non-linear Structures

In the face of results such as those shown above, both of measured FRF
data and of the results from applying modal analysis processes to them,
the question frequently arises as to what can be done by way of modal
analysis for structures which are non-linear to some limited degree. Not
surprisingly, this questions has been addressed by several workers in
the non-linear dynamics field and some very advanced and
sophisticated analysis procedures have been proposed. The results from
such studies are generally very advanced material and are not
appropriate for a basic text such as this. However, there are some
simple quasi-linear analysis procedures which can be developed as
slight extension from our linear modal analysis methods which are
perhaps useful as a first-level study of some classes of non-linear
structure.

The basic approach assumes that if we have steady-state vibration
with amplitude, Xo, then the non-linear element(s) in the structure
(which is almost always a spring or a damper) can be considered to have
an effective or equivalent linear stiffness (or damping) coefficient which
can be expressed as:
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^o) or c(X0)

and that each such component (as is the case for a linear structure)
would be characterised not by a single stiffness, or damping factor, but
by a range of values, depending upon the amplitude of vibration
prevalent at any instant. This characteristic is illustrated in Fig. 2.46.
In this case, it would be helpful to be able to identify and to define the
values of these equivalent linear stiffnesses or damping factors, and
that is what the following method seeks to do.

4.7.3.1 Basic approach
The basic method which is summarised below is an extension of the
SDOF methods of modal analysis described earlier in this chapter. It is
limited to the analysis of effectively single-degree of freedom behaviour
in the vicinity of an isolated mode of vibration and is not well suited to
more complex situations, such as close modes. The basis of the approach
can be explained graphically from the following plots. Consider first the
conventional modulus plot for an FRF of a linear SDOF system with
constant coefficients, as shown in Fig. 4.26(a). If we extend this to a
non-linear system for which, say, the stiffness is amplitude-dependent,
then we can construct a series of such FRF plots for vibration of that
system in which the amplitude of the response is maintained at a
constant level throughout the small frequency range of the resonance
measurement, as shown in Fig. 4.26(b). Each such curve shows the
behaviour of a linear system because, if the response amplitude is kept
constant throughout the test, the effective stiffness is constant and the
system is effectively linear. However, a slightly different system is seen
for each different response amplitude. If we were to conduct the
measurement under conditions where the response amplitude was
allowed to vary, such as results from tests where the excitation force is
maintained at a constant level, for each frequency of measurement,
then the resulting FRF curve is quite different and can be envisaged as
a collection of points drawn from different curves of the first set,
depending upon how much response the unit excitation generates at
each frequency, as shown in Fig. 4.26(c).

Although not essential to the numerical analysis procedure itself, it
is helpful for visualisation purposes to re-visit the so-called ‘inverse’
format of plotting FRF data, introduced first in Chapter 2, and to replot
the above curve in that format because the effect of the non-linearity is
to provide a plot which is not a straight line in one or other (or both) of
the two plots. A system with a non-linear stiffness, measured at various
response levels, gives rise to a non-straight Real Part plot (see
Fig. 4.27(b)), while non-linearity on the damping element causes a
strongly-distorted Imaginary Part plot: Fig. 4.27(c).
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Fig. 4.26 Plots of non-linear system FRF data.
(a) Linear system with constant coefficients; (b) Constant
response level FRF for non-linear system; (c) Constant
excitation level FRF for non-linear system



367

(a)

(b)

(c)

Fig. 4.27 Inverse FRF plots for non-linear systems.
(a) Inverse FRF plots for linear system; (b) Inverse FRF plot for
system with non-linear stiffness; (c) Inverse FRF plot for system
with non-linear damping

The method of analysis, therefore, is to extract values for the
effective stiffness and damping from each individual point on the FRF
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curve as it passes through the resonance region (which is generally the
only region where the amplitudes of vibration are large enough to
activate any significant non-linearity, anyway). As can be seen from the
plots in Figs. 4.26 and 4.27, each frequency point can be identified by
the stiffness of the constant-stiffness straight line on which it lies, as
can the damping from the Imaginary Part plots. What must be done in
addition to this basic identification stage is to retain the information on
the actual amplitude of the system response as required by this
representation so that the extracted equivalent stiffness and/or
damping can be referred to the relevant amplitude level, . This
demands simply that the measured response level information is
retained, rather than deleted as is usually the case once the ratio of
response/excitation force has been computed. Of course, the
measurement of the FRF must be made using excitation levels that
cause the response to span a range of amplitudes that are of interest in
the final identification and this can be achieved either by controlling
the excitation level or by allowing the level to ‘float’ as this usually has
a similar result.

This method of analysis involves a number of assumptions, most of
which are frequently quite reasonable, including one which takes the
mass to be constant, and never the source of non-linearity.

4.7.3.2 Application of method and examples
In this section we show some examples of the application of the
aforementioned method, SDOF-NL. The simplest application assumes
real modes (i.e. that the modal constants are always real) and we can
develop plots of effective stiffness and/or effective damping as a
function of response amplitude which has two branches: one as the
resonance is approached (and the response level is rising with
increasing frequency) and a second time as the response falls as the
resonance is passed. If these two branches trace out effectively the
same characteristic (see Fig. 4.28(a)), then it can be surmised that a
reasonable result has been achieved, and that the underlying
assumptions have been valid.

For more complex situations, where the modal constant might have
a non-negligible degree of complexity, then it is possible to refine this
method by taking pairs of points from the FRF data set, both relating to
the same response amplitude but one below the resonance and one
above. These two data points, comprising four quantities, can be used to
extract the four modal parameters, which lead directly to the effective
stiffness and the effective damping which relate to the response level of
those particular pair of data points. This process can be repeated for
each available pair of data points.
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(a)

(b)

(c)

Fig. 4.28 Non-linear SDOF line-fit modal analysis method.
(a) Basis of analysis method; (b) Application to aerospace
structure; (c) Application to structure with added friction
damping

Examples of the application of this method are shown in
Figs. 4.28(b) and (c). The first case is for a structure which contains a
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significant non-linearity in the stiffness characteristics while the second
presents results taken from measurements of the internal damping in a
spinning rotor, which has clear indications of both non-linear stiffness
and non-linear damping.

4.8 CONCLUDING COMMENTS
In this chapter we have sought to describe the area of modal analysis
which in many ways, is the least under the direct control of the modal
test engineer. In the task of extracting modal model parameters from
measured test data, the analyst must rely on the skill of others who
have coded the various analysis algorithms since these are generally
beyond the ability of the practitioner. Against this, or perhaps because
of it, the analyst must develop the various skills which enable him or
her to select the most appropriate analysis procedure for each case, and
to make the best interpretation of what is often ambiguous and
sometimes confusing output from these analysis methods.

In this chapter we have first sought to impress upon the user the
need for accuracy and reliability in the measured data that is the source
of a modal analysis. If these data are not of high quality, the resulting
modal model cannot be expected to be any better, and will probably be
worse. Thus, attention must be paid at the initial phases to ascertain
and to assure the necessary quality of the raw data. Questions as to the
correct order for the model (how many modes need to be included in the
modal model?) and the most appropriate model for damping (viscous or
structural; proportional or non-proportional?) are often foremost
amongst these early interpretations.

A hierarchy of different types of modal analysis procedure have
been catalogued, from the simple SDOF one-mode-at-a-time for a single
response function, through MDOF methods which reveal several modes
at a time, to global analysis methods where several modes are extracted
simultaneously from several FRFs. These methods are largely carried
out today in the frequency domain, but time-domain alternatives exist
for some cases and these have also been reviewed.

This chapter does not claim to be exhaustive by any means: nor
have the most advanced and powerful methods been discussed. This is
an area in the subject which is the subject of constant improvement and
enhancements and the interested reader is directed to more specialist
works (such as [6] and [50] for more detailed discussions and
descriptions.
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CHAPTER 5

Derivation of Mathematical
Models

5.1 INTRODUCTION
5.1.1 The Role of Different Types of Model
At this stage we have described all the main tools available to the
modal analyst. Now we consider how these may be marshalled in order
to achieve the primary objective — namely, that of deriving a
mathematical model to describe the dynamic behaviour of the test
structure. It will be recalled from the earlier parts of the book that we
found it convenient to classify the various types of model which can be
constructed and also to consider the many different applications for
which these models might be required. The subject is sufficiently broad
that no single type of model is suitable for all cases and so the
particular combination of measurement and analysis steps will vary
according to the application. Thus we arrive at a most important aspect
of the modelling process: the need to decide exactly which type of model
we should seek before setting out on the acquisition and processing of
experimental data.

It will be recalled that three main categories of system model were
identified, these being the Spatial Model (of mass, stiffness and
damping properties), the Modal Model (comprising the natural
frequencies and mode shapes) and the Response Model (in our case,
consisting of a set of frequency response functions). In addition to this
grouping, we have also seen that there exist Complete Models of each
type (a theoretically-ideal situation, although in reality these models
are usually only approximately correct) and the more realistic
Incomplete Models, which consist of something less than a full
description of the structure (but whose available parameters are
usually quite accurate). In almost all practical cases, we are obliged to
consider these incomplete models.

While the relative sequence of these three types of model has
previously been stated as Spatial-Modal-Response for a theoretical
analysis and, conversely, Response-Modal-Spatial for an experimental
study, we now view them in a different order, according to the facility
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with which each may be derived from the test data. This viewpoint
ranks the models: Modal, Response and then Spatial and directly
reflects the quantity of the completeness of data required in each case.

A modal model (albeit an incomplete one) can be constructed using
just one single mode, and including only a handful of degrees of
freedom, even though the structure has many modes and many DOFs.
Such a model can be built up by adding data from more modes but it is
not a requirement that all the modes should be included nor even that
all the modes in the frequency range of interest be taken into account.
Thus such a model may be derived with relatively few, or equally, with
many data.

The response type of model in the form of a FRF matrix, such as the
mobility matrix, also needs only to include information concerning a
limited number of points of interest — not all the DOFs need be
considered. However, in this case it is generally required that the model
be valid over a specified frequency range and here it is necessary that
all the modes in that range be included, and moreover, that some
account be taken of those modes whose natural frequencies lie outside
the range of interest to allow for the residual effects. Thus, the response
type of model demands more data to be collected from the tests.

Lastly, a representative spatial model can only really be obtained if
we have measured most of the modes of the structure and if we have
made measurements at a great many of the DOFs it possesses. This is
generally a very demanding requirement to meet and, as a result, the
derivation of a spatial model from test data is very difficult to achieve
successfully.

5.1.2 Contents of Chapter 5
This chapter is organised with the following structure: first, we shall
describe and explain just what data must be measured and analysed in
order to construct a suitable model; also, what checks can be made to
assess the reliability of the finished product before it is used for its
ultimate objective. Next, we shall discuss a number of techniques that
are now available for what we shall term ‘refining’ the model which is
obtained from the tests. There are usually a number of features that are
present in real test-derived models that are difficult to reconcile with
the cleaner, simpler and tidier world of the analytical model and it is
these that may need ‘refining’. For example, it is common practice to
extract complex mode shapes from the test data obtained on most real
structures but the corresponding analytical models are almost always
undamped so that their modes are real. Closing the gap between these
two otherwise disparate types of mode is one of the tasks we may wish
to undertake. Then, there are a number of awkward features associated
with the usually gross incompleteness of test-derived models, certainly
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as compared with their analytical counterparts. As a result, we may
wish to expand our experimental models, or, alternatively, reduce the
theoretical ones so that the two models which are to be compared are at
least of the same order. Lastly, we shall explore some of the properties
of the models which can be derived by the means described here. There
are a number of properties of which the analyst must be keenly aware
and some which can be of considerable assistance in various
applications for which the models are destined. Some of the more
important of these properties will be discussed and explained.

5 2 MODAL MODELS
5.2.1 Requirements to Construct Modal Models
A modal model of a structure is one which consists of two matrices: one
containing the natural frequencies and damping factors (the
‘eigenvalues’) of the modes included, and a second one which describes
the shapes of the corresponding modes (the ‘eigenvectors’). Thus, we
can construct such a model (albeit an incomplete one) with just a single
mode and, indeed, a more complete model of this type is assembled
simply by adding together a set of these single-mode descriptions.

The basic method of deriving a modal model is as follows. First, we
note that from a single FRF curve, Hj^ (co) , it is possible to extract
certain modal properties for the r^h mo(}e by modal analysis so that we
can determine:

~ hr> r^jk r =1, m (5-1)

Now, although this gives us the natural frequency and damping
properties directly, it does not explicitly yield the mode shape: only a
modal constant which is formed from the mode shape data. In order to
extract the ‘individual’ elements, <|> , of the mode shape matrix, [Q] , it
is necessary to make a series of measurements of specific frequency
response functions including, especially, the point FRF at the excitation
position. If we measure , then by using (5.1) we see that analysis of
this curve will yield not only the natural frequency properties, but also
the specific elements in the mode shape matrix corresponding to the
excitation point, <|)^r , from:

-> “r> hr.rAjk “> ^kr r =l,m (5-2)

If we then measure an associated transfer FRF using the same
excitation position, such as Hj^ , we are able to deduce the mode shape
element corresponding to the new response point (<t>jr ) using the fact
that the relevant modal constants may be combined with those from the



374

point measurement:

L. (5-3)

Hence we find that in order to derive a modal model referred to a
particular set of n coordinates, we need to measure and analyse a set of
n FRF curves, all sharing the same excitation point (or the same
response point, in the event that it is the excitation which is varied) and
thus constituting one point FRF and (n — 1) transfer FRFs. In terms of
the complete FRF matrix, this corresponds to a requirement to measure
the individual functions which lie in one column (or one row, since the
FRF matrix is generally symmetric), see Fig. 5.1(a). In practice,
however, this requirement is the barest minimum of data which will
provide the required model and it is prudent to measure rather more
than a single column. Often, several additional elements from the FRF
matrix would be measured to provide a check, or to replace poor data,
and sometimes measurement of a complete second column or row might
be advised in order to ensure that one or more modes have not been
completely missed by an unfortunate choice of exciter location, see Fig.
5.1(b). It will be clear from inspection of the aforementioned expressions
that if the exciter were placed at a nodal point of one of the modes (e.g.
if (fi^were zero for one mode) then there would be no indications at all
of the existence of that mode because every modal constant would be
zero for that mode, irrespective of whether the other elements, §jr , are
zero or not. Thus, excitation at a node of any mode must be avoided and
it may require more than one measurement to confirm that this
unwanted condition has not been unwittingly introduced.

Once all the selected FRF curves have been measured and
individually analysed, using the most appropriate methods from
Chapters 3 and 4, there remains a further stage of processing to be
done. Using any of the single-curve modal analysis methods outlined in
Chapter 4, we shall find ourselves in possession of a set of tables of
modal properties containing rather more data than we are seeking. In
particular, we shall have determined many separate estimates for the
natural frequency and damping factor of each mode of interest as these
parameters are extracted afresh from each FRF curve in the measured
set. In theory, all such estimates should be identical but in practice they
seldom are, even allowing for experimental errors, and we must find a
way to reduce them to the single value for each property which theory
demands. A similar situation arises for the mode shape
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Fig. 5.1 Frequency response function matrix: selection of FRFs to
measure.
(a) Minimum data requirement; (b) Typical data selection

parameters also in the event that we have measured more than the
minimum FRF data, i.e. if we have measured more than one row or
column from the FRF matrix.

The simplest procedure is simply to average all the individual
estimates to obtain mean values, and t], . In practice, not all the
estimates should carry equal weight because some would probably
derive from much more satisfactory curve fits than others and so a more
refined procedure would be to calculate a weighted mean of all the
estimates, taking some account of the reliability of each. In fact, it is
possible to attach a quality factor to each curve-fit parameter extraction
m most of the methods described in Chapter 4 and these quality factors
serve well as weighting functions for an averaging process such as that
just suggested.

It is important to note that if we choose to accept a mean or
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otherwise revised value for the natural frequency and damping factor of
a particular mode, then in some cases the values assumed for the modal
constants should be revised accordingly. For example, we noted in the
circle-fitting procedure that the diameter of the modal circle is given by:

rDjk = r-^jk
(»rTlr

(5.4)

and so if we choose to revise <nr and r]r, taking all the
measured/analysed data into account, then we should also revise the
value of since there is no reason to modify the circle diameter
itself. Thus, we obtain a corrected set of modal constants, and so mode
shape elements for each curve analysed using:

rAjk ^rAjk ^r^lr
Hr

(5-5)

where the ~ indicates a revised value.
As mentioned towards the end of Chapter 4, there exist a number of

more advanced curve-fitting methods which obviate the need for the
above stage of the process by the simple device of performing their
analysis of the complete set of FRF curves in a single step. Whatever
method is used to reduce the analysed data to their final form, this
must consist of the two matrices which constitute a modal model,
namely:

k (1 + ^Tlr)]mxOT , [^Inx/n

Finally, mention should be made of a simplified form of the modal
model which can be obtained rather more quickly than that obtained by
following the above procedure. This alternative approach requires first
the measurement and full analysis of one FRF, preferably the point
mobility, in order to determine values for the natural frequencies and
damping factors. Then the analysis of the subsequent FRF curves
consists simply of measuring the diameters of the modal circles,
omitting the stages which yield further natural frequency and damping
estimates. Such a procedure is acceptable in those cases where one has
full confidence in the first or reference FRF measurement, or where
accuracy is not of paramount concern.
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5.2.2 Double Modes or Repeated Roots
One of the areas of difficulty that can arise when constructing models of
practical structures is that which occurs when the structure has two or
more modes with the same natural frequency. Many structures possess
double modes: most structures that are axisymmetric (discs, wheels,
cones, ...), or cyclically periodic (such as gear wheels, or bladed
assemblies, ...) have most of their modes in such pairs of effectively-
identical natural frequencies. In practice, when a structure has two
modes that are so close in frequency that it is impossible to detect more
than one ‘root’ when analysing a measured response function in the
vicinity of a resonance, then we risk being unable to derive a true model
for the structure. All we can define in these circumstances is a single
equivalent mode which is, in fact, a combination of the two actual
modes that prove difficult to identify individually.

It might be thought that if the consequence of having a double mode
is that it is not possible to detect the fact, then it is perhaps not
necessary to go to extra lengths to identify and then to include both
modes of the pair in the mathematical model we are constructing —
why not use just one equivalent mode? However, this is not the case
and discovering the existence of multiple modes, and of identifying all
the individual modes’ properties, is indeed essential for most
applications of the resulting model. It is worth recalling a simple case
study from a previous section to illustrate and emphasise the
significance of this subtlety. Consider a simple disc-like structure which
is being excited at a point A on its rim and at a frequency which is at
the natural frequency of its 2 nodal-diameter (2ND) mode: Fig. 5.2(a).
The lines show the nodal patterns present at this condition. According
to our understanding of structures in general, if the excitation were
moved around the disc rim to be placed at one of the nodal points, B,
then the mode we see in Fig. 5.2.(a) would no longer be excited, and
there would be no resonance: Fig. 5.2.(b). However, experience or
mtuition suggests to us that if we were to perform the simple
experiment just described, then what we would see would be the
resonance persisting, even when excited at the new drive point, and a
different mode shape would be evident as sketched in Fig. 5.2(c).
Indeed, this is exactly what does happen in these circumstances and the
only way that this can be explained is by recognising the existence of a
second mode at the same frequency as the first one seen in Fig. 5.2(a).
The first mode shape has not ‘moved’: another mode has become visible
by exciting at a second drive point. If we extracted only the single mode
evident from the data which result from excitation at point A, and
constructed a mathematical model based on that result, we would
simply be unable to use the resulting model to predict the result we
obtain with the second excitation. Thus, when a structure has
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Fig. 5.2 Significance of double modes.
(a) Excitation at resonance of 2ND mode; (b) Excitation moved
to node point; (c) New pattern of nodal lines

double modes, it is clearly very important that we can detect the fact,
and that we can identify all the modes which are present.

The only way that double or repeated modes can be detected and
identified in a modal test is by using data from more than one reference
(i.e. by exciting at more than one drive point, or measuring the response
at more than one point, if a moving exciter is used). This means that we
must measure FRF data from more than a single row or column — in
fact, from as many rows/columns as there are repeated roots (double
roots, or modes, require two rows/columns; triple modes require data
from three rows/columns, etc.).

5.2.3 Constructing Models for NSA Structures
In Chapter 2 we introduced some of the theoretical features of those
structures which are classified as Non-Self-Adjoint (NSA). Principle
amongst this class of structure are those with non-symmetric mass or
stiffness or damping matrices, such as occurs in many structures with
rotating components. This class of structure requires additional data to
be acquired and analysed before a modal model can be assembled, over
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and above those data which have been identified in the preceding
section. Even with the qualifications just described in connection with
repeated roots, and the dangers of choosing a nodal point as the
reference excitation or response measurement point, there is additional
information to be obtained in the case of NSA systems.

In the simpler cases, described above, we were able to take
advantage of the symmetry of the system matrices (mass, stiffness,
FRF, ...) and, as a result, we were obliged to measure just a single row
or column of the FRF matrix. In the case of NSA structures, the option
of choosing between a row or a column of the FRF matrix is not
available and we are required to measure and analyse the elements in
both a row and its associated column. Clearly, this places a significant
burden on the measurement phase, especially as it is often very
inconvenient to excite a structure at many different locations; the more
so if that structure is rotating. Nevertheless, unless we have some
additional information, or constraints, that is what is required. A
mathematical ‘explanation’ for this additional requirement can be given
by noting that in this class of system there are two types of eigenvector— left-hand and right-hand. Thus, there are twice as many eigenvector
elements to identify than for a conventional structure (which only has
one set of eigenvectors). In effect, the FRF data in the column reveal the
elements in the right-hand vectors and those in the row lead to the
elements in the left-hand eigenvectors.

There is one special case that might apply from time to time: for
some systems, the loss of symmetry in the system matrices arises solely
because of gyroscopic effects and in the event that only these NSA
features are present, then the resulting matrices are not completely
asymmetric but are skew-symmetric. For such a system, the left-hand
and right-hand eigenvectors are simply the complex conjugates of each
other and so knowledge of one set automatically reveals the other, and
we can revert to the acquisition and analysis of just one row or one
column of the FRF matrix in this special, but realistic, situation.

5.2.4 Quality Checks for Modal Models
As with other stages in the modal testing procedures, it is appropriate
at the conclusion of the modelling phase to seek and to implement any
checks that can help indicate the reliability of the obtained results.
There are two relatively straightforward such checks that can be
recommended for this phase of the process. It is possible, of course, to
regenerate FRFs from the modal data base that has been constructed
and which is, in effect, the modal model. Often, such regeneration of the
measured FRFs is an integral part of the quality checks on the modal
analysis phase of the procedure. However, it is also possible to use the
same data base to synthesise FRFs that have not (yet) been measured
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and so to do just that, and then to measure the corresponding functions
on the structure, can provide a powerful and convincing demonstration
of the validity of the modal model which has been assembled from the
primary measured data.

A second, more demanding but yet more convincing, demonstration
of the validity of the modal model is to use it to predict how the
dynamic properties of the test structure will change if it is subjected to
a small structural modification, such as can be occasioned by adding a
small mass at a selected point. The means of doing this check are
described in the next Chapter (Section 6.4): suffice it here to mention
that this is a most demanding test of the model but one that, once
passed, validates the model convincingly.

5.3 REFINEMENT OF MODAL MODELS
5.3.1 Need for Model Refinement
One of the features of most test-derived models is the likelihood of a
degree of incompatibility between such a model and others (such as an
analytical model) with which it may be compared. The most obvious
difference is likely to be the fact that the elements in the mode shapes
contain complex numbers (for the test-derived modes) while those
which are produced by theoretical analysis are usually confined to
undamped systems and are therefore composed of real mode shape
data. Objective comparison between complex mode shapes and real
mode shapes is hindered by this fundamental incompatibility and often
demands some refinement of one or other of the two sets so that like
can be compared with like.

A second obvious incompatibility lies in the almost universal
difference in the order or size of the models derived from tests, on the
one hand, and theoretical analysis on the other. Usually the former are
of relatively small order, typified by the number of measured DOFs, n,
while the latter are generally very much more detailed, comprising a
mode with the full set of DOFs, N, which is usually one or more orders
of magnitude greater than n. Again, when comparisons are to be made
between a measured model and its theoretical counterpart, or even
between two models of different sizes in general, this order
incompatibility presents obstacles to meaningful interpretation and
there is a desire to refine one or other model to bring them both to the
same size. This can be achieved either by reducing the larger,
theoretical, model down to the order determined by the number of
measured DOFs, or by expanding the smaller model up by a form of
interpolation so that it is described by the same number of DOFs as the
complete analytical model. Both of these approaches are possible, as is
the conversion of complex modes to real, but it must be recognised at
the outset that none of these refinement processes is exact: they each
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involve approximations that mean that a compromise has been made in
order to achieve the greater degree of compatibility which is desired. As
such, the methods tend to fall into a more advanced category of process
which demand more rigorous attention than can reasonably be
presented in the introductory presentation offered below.

5.3.2 Complex-to-Real Conversion
As mentioned above, this first type of model refinement is sought when
trying to compare two sets of modes: complex ones, as derived from
analysis of test data, and real ones, such as are traditionally produced
from theoretical analyses in the absence of a detailed knowledge of the
nature, extent and distribution of damping. Such knowledge is rarely
available at the modelling stage with the result that the great majority
of mathematical models produced by conventional FE modelling are
undamped, and have real mode shapes. This results in a requirement
for a method which permits us to deduce the associated real modes for a
structure for which we know the actual complex modes. Expressed
another way, we wish to be able to determine what would be the mode
shapes of the tested structure if, by some means, we could remove the
damping but leave everything else the same. There are several methods
proposed for this task of complex-to-real conversion and we shall
mention three here.

5.3.2.1 Simple method
The first is a very simple method which can be applied to many
practical situations without much effort, either computational or
theoretical, and is the one most widely practised. This simple method is
to convert the mode shape vectors from complex to real by taking the
modulus of each element and by assigning a phase to each of 0 or 180
degrees. Which of these two alternative phase angles is assigned to each
element is decided by a simple ‘inspection’ and is based on the concept
that if the actual measured phase angle is within + 10° of 0° or 180°
then that phase angle is automatically set to the relevant polarity. This
simple and reasonable criterion is then extended to all phase angles so
that, in principle, any phase angle of a complex mode shape element
which lies between 0° and +90°, or between 270° and 360°, is set to 0°,
while those elements with phase angles between 90° and 270° are set to
180°. This procedure can become difficult to apply in borderline cases
where there are elements with small moduli and poorly-determined
phase angles but reference to a suitable graphical presentation of such
a complex mode, as described below in respect of the so-called
‘starburst’ format, can assist in making the necessary decisions (see
Figs. 5.3 (e) and (f)). This visual check will also serve to resolve a small
number of cases that are sometimes encountered in which a mode
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shape is effectively real but has every element rotated by a non-trivial
phase angle that is applied equally to every element. In these cases, the
typical mode shape element is found to have a phase angle which is a
few degrees either side of this uniform offset value or that plus 180°
(rather than either side of 0° or 180°, as described above). Such mode
shapes are sensibly real, even though the corresponding vectors are
populated with complex numbers: it is the relative phase angles
between the different elements in the vector which determine whether
the mode is truly complex, or effectively real.

5.3.2.2 Multi-point excitation (Asher’s method)
The second method for extracting real modes from complex is provided
by a numerical simulation of the multi-point or ‘appropriation’ testing
technique introduced in Chapter 2. In this method, the test-derived
mathematical model based on complex modes is used to synthesise the
response that would be produced by the application of several
simultaneous harmonic forces (as is actually done in multi-point
excitation tests) in order to establish what those forces would need to be
in order to produce a mono-modal response vector. There are a number
of different algorithms available for the task of finding such a force
distribution, as mentioned in Chapter 2, but here we can explore the
application of these methods to this specific task of determining the
modes that the structure would possess if the damping could be
artificially removed. The physical basis of this approach (which is
referred to in the literature as ‘Asher’s Method’ [51]) is quite simple: if
this optimum set of excitation forces for a given mode can be found,
then they represent the forces that are actually being generated by the
damping in the system at resonance of that mode. At a resonance
condition, it is known that the stiffness forces exactly balance the
inertia forces, and the excitation forces exactly balance the damping
forces, and so if we can establish this mono-mode response condition we
have effectively isolated the damping effects and can then proceed to
deduce the dynamic properties of the structure with these effects
removed. The problem is that any vector of excitation forces that is
determined in this process is likely to be approximate, owing to the
inevitable fact that the number of DOFs included in the test-derived
model (and at which excitation forces can be numerically applied) is
limited and approximations will inevitably follow. Nevertheless, a
judicious choice of included DOFs (see Chapter 6) can minimise these
effects and can yield useful results in this task.

While not seeking to present a rigorous analysis of this method, it is
appropriate to introduce the main features of that analysis: readers
who wish to explore the application are referred to the appropriate
literature for more detail [51]. We have already introduced the basic
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equations for this method — in Chapter 2 — and the reader is referred
back to equations (2.68)-(2.70), which show that for a generally-damped
system, subject to a mono-phased harmonic multi-excitation force
vector, {F}, it is possible to obtain a similarly mono-phased response
vector, {X} , by satisfying the following relationships:

((-co2M+[^])COS0 + [n]sin9){x'}={f}
sin0 — [D]cos0){x}= {0}

(5.6) also (2.69)

recalling that

{/}={F}eia,t
(5.7) also (2.68)

If the phase lag, 0, between (all) the forces and (all) the responses is to
have a value of exactly 90° (for resonance) then it can be seen that
equation (5.6) reduces to:

(5.8) also (2.70)

which is clearly the equation to be solved to find the undamped system
properties, including its undamped (i.e. real) mode shapes. It can also
be shown that the following two equations hold:

Re[a(ffl)]{#}= {0}
{v|/J = Im[a((o)]|F (5.9)

Thus the sequence of steps required to determine this solution is as
follows:

(4) compute [a(co)] from the complex modal model;

(2) determine the undamped system natural frequencies, co^ , by
solving the determinantal equation: det |Re[a(m)]| = 0;

(4) calculate the mono-phase vector for each mode of interest using:
Re[a(W)]{F} = {0};

(4) calculate the undamped system mode shapes, , using the just-
derived force vector,{F} , and {vpM} = Im[a(co)]{F}.
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5.3.2.3 Matrix transformation
The third method introduced here is one which seeks a numerical
solution to the expression linking the known damped (complex) modes
and the unknown undamped (real) modes. The essential relationship
between these two sets of eigenvectors is simple:

The method is developed in detail in Reference [52] but in summary can
be described as the following steps:

(4) assume that Re[Til is unity and calculate Im[T|] from:
Im[Tx] = -[Re[Od]f [Re^lf1[Re[Od]]r Im[Od];

(2) calculate [Mi] and [Ax] from:
[MiMTlffTi] ;

(3) solve the eigenproblem formed by [Mi] and[Ax] leading to:
[or]; and [[T2]]

(4) calculate the real modes using:

As previously mentioned, the application of these methods to
experimentally-measured data can be difficult to achieve and reference
to the detailed description on the methods is strongly recommended.

5.3.3 Expansion of Models
The next most important model refinement that is often required is that
of expansion: the addition to the actually-measured modal data of
estimates for selected DOFs which were not measured for one reason or
another. Prior to conducting each modal test, decisions have to be made
as to which of the many DOFs that exist on the structure (and which
would be included in a theoretical model) will be measured. These
decisions are made for various practical reasons which include: limited
test time, inaccessibility of some DOFs; anticipated low importance of
motion in certain DOFs; and so on. One major application of expansion
is to the acquisition of data relating to RDOFs (rotational DOFs). As
mentioned elsewhere, these can be very difficult to measure directly
(see Section 3.11) yet they are critical for some applications (see
Section 6.4). One means of including these data is to derive them by one
of the expansion methods described below.

Later, during the exploitation or application of the test-derived
model, the absence of some of the data which have thus far been
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omitted can present difficulties. For example, if relatively few DOFs
have been measured, then it may be difficult to interpret visually the
animated displays that are used to illustrate mode shapes. At the same
time, these displays show the displacement at DOFs which have not
been measured as having zero value and that is not necessarily the
case. Further, there may well be several DOFs which are difficult to
access or which are difficult to measure (such as rotational DOFs) and
for these it can be interesting to seek data from interpolation or
expansion based on the data that have been measured.

Three approaches to the expansion of measured modes will be
mentioned here:

(1) Geometric interpolation using spline functions;
(2) Expansion using the analytical model spatial properties, and
(3) Expansion using an analytical model’s modal properties.

In all three we are in effect seeking a transformation matrix that allows
us to construct a long eigenvector, {§COMPLETE}Nxl , from knowledge
of a short (incomplete) one, INCOMPLETE}nxi > plus some additional
information. In effect, that means finding a transformation matrix, [T] ,
that satisfies:

{^COMPLETE }nx1 = I7Ivxn INCOMPLETE }nxl

5.3.3.1 Interpolation
The first of these — simple interpolation — has a limited range of
application and can only really be used on structures which have large
regions of relatively homogeneous structure: those with joints or abrupt
changes in section are much less likely to respond to this form of
expansion. The method is simply geometric interpolation between the
measured points themselves, such as by fitting a polynomial function
through the measured points and using that to interpolate for
intermediate, unmeasured, DOFs. This provides a very simple approach
to the task, but one of limited applicability.

5.3.3.2 Expansion using theoretical spatial model (Kidder’s
method)

The second approach to the problem of interpolation is provided by
using a theoretical model’s mass and stiffness matrices in a form of an
inverse Guyan reduction procedure. If we partition the eigenvector of
interest, into (the DOFs to be included) and {yi<|>2}r
(those which are not available from measurements), then we may
write:
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[a^U A-^12] 2^1 4^12?-®r^La-^21 A^22 J La-^21 A^22 J>
NxN Nxl

(5.10)

We can use this relationship between the measured and unmeasured
DOFs (exact for the analytical mode shapes) as the basis for an
expansion of the incomplete measured mode shapes, as follows:

X$2/r - _([a ^22]““r [4-^22]) \[a^21 ®r [a M2\ ]){x 4>1}r
(N -n) x1 (N - ri) x (N -ri) (N -n)xn 71x1

or

= l?21]{x }r (5.11)

where

[^21]= ^22 ]— “r [a -^22]) ([a-^I ®r [a ^21])
This expression is suitable for use to fill out the unmeasured elements
in the mode shape matrix and can be related to the earlier general
relationship between the incomplete measured vector and the complete,
expanded, vector as follows:

}r = Kx )r = jjx’I’l }r (5.12))

As always, attention must be paid to the potential ill-condition of the
matrix which is to be inverted and in this case the requirement is for a
non-singular matrix: ([A22] [-^22]) an^ this will generally be
satisfied as the natural frequencies for the whole model are very
unlikely to be those for the partitioned submatrices found in this
expression. In fact, if necessary, alternative expressions can be derived
for the expansion, such as:

X$2/r -“(Ia-^12]-®f[a-^12]) ([a ^11]”“ r [a-^hIXx^iL (5.13)
(N - 11) x1 (N -n)xn nx n nxl
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for which a suitable generalised inverse computation can be used in
place of the direct inverse for equation (5.11).

5.3.3.3 Expansion using analytical model mode shapes
The most popular method of expansion, however, is another one which
uses the analytical model for the interpolation but bases that process on
the mode shapes derived from the analytical model spatial matrices,
rather than on these matrices themselves. There are, in fact, a number
of options for this version, using different mixtures of data from the
analytical and test-derived models and an extensive body of work has
been reported in this area under the general title of SEREP (System
Equivalent Reduction and Expansion Processes) methods, [53].

Using the notation introduced above, we may write the following
expression which relates the experimental model mode shapes to those
of the analytical model:

=NWr
or

A^ll] [a®12
A$21] [a®22

(5.14)

The basis of this method is to assume that the measured mode shape
submatrix can be represented exactly (although not uniquely) by the
simple relationship (which assumes that can be taken to be zero):

{xta }r = [a®11]{yi }r (5.15)

so that an estimate can be provided for the unmeasured part of the
eigenvector from:

U$2}= [a®21][a^’h] 1{x^lK = [^ilIx’l’iV (5.16)

Thus we can write the full transformation as:

= (5.17)

This formula can be generalised to a single expression which covers
several measured modes, m in our usual notation:
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j7Vxmx Lvx/n^ In^ xn [x^l]nxmx (5.18)

where m% , ina are the numbers of experimental and analytical modes
used, respectively. This equation can be further simplified, to the form:

[®x]7Vxmx t^Lvxn [x lnxznx (5.19)

The expression we have defined above for the overall expansion
transformation matrix, [T] , is one of a family of alternatives. The one
already defined bases the expansion purely on the analytical model
mode shapes. Other formulations are possible involving various
combinations of the available experimental mode shape data and those
for the analytical model. Below we give the various possibilities for [T]:

k(3)]= L^l]
LA J

[^(4)]= X®1
_A^2.

(A model - based)

(X model - based)

(Mixed/A - based)

(Mixed/X - based)

(5.20)

These various options comprise the basis of the SEREP family of
methods. As a final comment, it must be pointed out that all the above
expressions are approximate because of the initial assumption that the
higher modes are not required to be included in the process (i.e. that
{y2} is zero). Whilst this may be a reasonable assumption, it is just that— an assumption — and so the resulting expressions for the expanded
mode shapes are simply an interpolation and are not exact. Indeed, it
would be somewhat remarkable if there were any other result as that
would suggest that it was never necessary to measure any more than a
few points on the structure as the rest could be deduced by expansion.
Expansion does not change the fact that the basic model is incomplete
and, consequently, if the expanded models are to be used to validate an
analytical model, it must be remembered that much of the expanded
mode shape data has come indirectly from the very model that is under
evaluation. Do not be surprised if expanded mode shapes correlate very
well with the analytical model!
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5.3.4 Reduction of Models
The final process to be considered here is model reduction, the inverse
of the expansion process, which is used when it is decided to obtain
compatibility between two otherwise disparate models by reducing the
size of the larger of the two models — almost always, the analytical
model. Strictly speaking, model reduction is not a procedure that is
generally applied to test-derived modal models, and so is slightly out of
place in this section. However, it is relevant to the context of model
expansion and so will be included, albeit briefly.

Although model reduction was an important and widely-used
technique in structural analysis just a few years ago, because of the
limitations imposed by the available computing power, it has more
recently become less necessary, partly because of an extraordinary
increase in computing power but also because of the various
approximations it introduces. In the present context of comparing test-
and analysis-derived dynamic models, reduction is clearly less popular
than the alternative expansion approach. Indeed, reduction is not a
process that is applied to a test-derived model at all, but rather to the
analytical models with which the experimental data are to be
compared.

There are basically two different types of model reduction, both of
which are applied to the spatial model, as opposed to the modal model
as is the case in model expansion. Both approaches achieve the same
end result of yielding a smaller-order model, with system matrices
which are nxn instead of NxN, but the difference is between (i) a
condensed model which seeks to represent the entire structure
completely at a smaller number of DOFs (and is thus a ‘complete’
model, albeit approximate) and (ii) a reduced model which has removed
information related to the DOFs that are eliminated from the model,
and which is thus an incomplete model. In the former type, the
condensation introduces an approximation because it is, in effect,
deriving a coarser model than the larger original version. The latter
type of model has the advantage that the information related to those
DOFs which are retained is as accurate as was that from the original
model, but the resulting reduced model is incomplete in the sense that
mass and stiffness features pertaining to the eliminated coordinates are
not included, nor are they compensated for. A reduced model of this
type is relatively useful if it is a modal model, or a response model, but
it is very difficult to use if the model is of the spatial type. The real
difficulty in this application is that the condensed model is the most
appropriate type of reduced analytical model, but the corresponding
experimental models which are also of reduced order are not of this
type. A small-order test-derived model of a complex structure comprises
a selection of data from the full model. The missing data are simply
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unmeasured and the behaviour of and at the unmeasured DOFs is in no
way accounted for in that reduced model.

We shall summarise below the basic features of model reduction by
condensation so that this process can be seen in relation to the
preceding techniques of expansion. The basic equation of motion for the
original model can be expressed as:

Mx}+MW={/} (5.21)

and this can be partitioned into the kept DOFs, {x^}, and the
eliminated DOFs, {x2} , (which by definition cannot have any excitation
forces applied to them) as follows:

^11 -^12 ^11 ^12 JM JA
^22 _ 1^2J _^21 ^22. lx2j [0

(5.22)

As seen in the earlier section on expansion, a relationship between the
kept and eliminated DOFs can be written in the form:

Xi I

X2j TVxl
{^iLxi

Nxn"M (5.23)

where the transformation matrix, [T] , can be defined by:

M= (1-p)(- [A22 r1[#21])+ p(- [M22 J"1[M21]) (5.24)

in which p is a reduction coefficient whose limiting values are p = 0 for
static reduction and P = 1 for dynamic reduction. The reduced
mass and stiffness matrices which are produced by this process are:

^22
M12

(5.25a)

and

K22
k12

^21
%22 NxN

FM1
-^1Nxn

(5.25b)

The two limiting cases of static and dynamic reduction are of particular
interest. In each case, one of the two system matrices is unchanged and
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the other one is, for static (Guyan) reduction and dynamic reduction,
respectively:

P =1: [Mflstahc]= [M12](-[M22f1[M21])+ [Mn ] ;

P = 0:

^^namtC]= ](_ J-l 2i ])+ ]

(5.26)

From a theoretical standpoint, these reduction procedures, when
properly used, can provide useful though approximate models of the
structures to which they relate. ‘Proper’ application means an optimum
choice of which DOFs to retain and which can be eliminated, and this
choice is case-dependent. The resulting models are capable of
representing the eigenproperties of the structure with reasonable
accuracy. However, as mentioned in the introduction, a reduced
theoretical model of this type does not correspond to a similarly low-
order model which is obtained from experiments since that is formed
simply by ignoring the eliminated DOFs. The measured data for the
included DOFs are the same no matter how many DOFs are eliminated.
The retained properties of a condensed model are different for different
degrees of reduction. Thus, there are inherent difficulties involved in
using this mixture of condensed (but complete) theoretical models and
reduced (but incomplete) experimental models.

5.4 DISPLAY OF MODAL MODELS
One of the attractions of the modal model is the possibility of obtaining
a graphic display of its form by plotting the mode shapes, thereby
giving some visual insight into the way in which the structure is
vibrating. As there are a number of alternatives for this phase, and a
number of important features, it is worth discussing them briefly.

Once the modal model has been determined and tabulated
according to the description given in Section 5.2, there are basically two
choices for its graphical display: a static plot or a dynamic (animated)
display. While the former is far less demanding than the latter in
respect of the material necessary to produce the display, it does have
serious limitations in its ability to illustrate some of the special features
of complex modes. In cases where the modes have significant
complexity and individual displacements have phase angles which are
not simply 0° or 180° from the others, only an animated display is really
capable of presenting a realistic image.
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5.4.1 Static Displays
5.4.1.1 Deflected shapes
A static display is often adequate for depicting relatively simple mode
shapes and, in any case, this is the only format suitable for permanent
documentation in reports. The simplest procedure is to draw first an
outline of the test structure using a viewpoint which permits visibility
of all important points on the structure. Usually, this drawing is formed
of a frame linking the various coordinates included in the modal survey,
such as that shown in Fig. 5.3(a), and often this datum grid is drawn in
faint or broken lines. Then, the grid of measured coordinate points is
redrawn on the same plot but this time displaced in each direction (x, y
and z) by an amount proportional to the corresponding element in the
mode shape vector. The elements in the vector are scaled according to
the normalisation process used — and are usually mass-normalised —
and their absolute magnitudes have no particular significance in the
present process. It is customary to select the largest eigenvector
element and to scale the whole vector by an amount that makes that
displacement on the plot a viable amount. It is not possible to dictate
how large a deflection is ‘viable’ as this depends on the particular mode
shape as well as on the complexity of the structural form itself. It is
necessary to be able to see how the whole structure deforms but the
displacements drawn on the plot must not be so large that the basic
geometry of the structure appears to be violated. Fig. 5.3(b) shows a
suitable plot for a mode of the plate previously illustrated in Fig. 5.3(a).

In this process, it will be necessary to assign a positive or negative
phase to each element in the mode shape vector. Only phase angles
which are effectively 0° or 180° with respect to the norm can be
accommodated on this type of plot even though the results from the
modal test may indicate marked deviations from such a pattern, as in
the case of complex modes. Thus, it is often necessary to perform a
‘whitewashing’ exercise on the modal data and sometimes this requires
making difficult judgements and decisions, such as how to incorporate
an eigenvector element whose phase angle is closer to 90° than to 0° or
180° (see the previous section). Fortunately, this dilemma is most often
encountered on modal deflections which are relatively small so that
they do not influence the overall shape of the plot very much. However,
the selection of positive or negative phase for such a point usually has
the effect of determining the location of a nodal point or line, and this in
itself may be important.
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Fig. 5.3 Static displays of mode shapes.
(a) Basic grid; (b) Single-frame deflection pattern; (c) Multiple-
frame deflection pattern; (d) Complex mode; (e) Argand diagram
‘starburst’ plot — 1 Quasi-real mode; (f) Argand diagram
‘starburst’ plot — 2 Complex mode

5.4.1.2 Multiple frames
A logical sequel to the previous presentation is that in which a series of
deflection patterns are superimposed, each one computed for a different
instant in time. If all these are plotted together, see Fig. 5.3(c) then
some indication of the motion of the structure can be conveyed, and
especially, lines or points of zero motion (nodes) can be clearly
identified. It is also possible, in this format, to give some indication of
the essence of complex modes, as shown in Fig. 5.3(d). As has been
explained in earlier chapters, complex modes do not, in general, exhibit
fixed nodal points and this is a feature that can be illustrated in the
static multi-frame presentations that we have shown here.

5.4.1.3 Argand diagram (‘starburst’) plots
Another form of presentation which is useful for complex modes has
already been introduced earlier in the book but is worth repeating here.
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Each eigenvector is, in effect, a vector of complex numbers: even for
cases of real modes, these complex eigenvector values simply have
arguments of 0° or 180°. Thus it is useful to plot the individual
elements of the eigenvector on a polar plot, as shown in the examples of
Figs. 5.3 (e) and (f). Although there is no attempt to show the physical
deformation of the actual structure in this format, the complexity of the
mode shape is graphically displayed, even when that feature is
negligible and the mode is, effectively, real. These presentations can be
very helpful when seeking to understand or demonstrate modal
complexity.

5.4.2 Dynamic Display
The above-mentioned difficulties are avoided by the alternative display,
that of the animated mode shape. Using suitable computation facilities,
it is possible to display on the screen a plot of the type just described,
and to update this picture at regular and frequent intervals of time so
that a simulation of the vibration is displayed in slow motion. Usually
what is done is that the coordinates for the basic picture are computed
and stored, as are a corresponding set for a fraction of a vibration cycle
later, and then for a further fraction of a cycle later, and so on. Each of
these sets of data constitutes one ‘frame’ and some 10-20 frames are
used for a complete cycle, i.e. at intervals of some 20° to 40° in angular
frequency. Once this data set has been constructed, successive frames
are displayed with an update rate which is suitable to give a clear
picture of the distortion of the structure during vibration; a rate which
can be adjusted to accommodate the varying phase angles of complex
modes. Indeed, the dynamic character of animation is the only really
effective way to view modal complexity. Another advantage of most
animated mode shape displays is the additional facility of changing the
viewpoint from which the picture is drawn, often necessary as different
modes can be best viewed form different orientations.

A static plot can be obtained from a dynamic display simply by
‘freezing’ the animation (i.e. by requesting a zero update rate).

5.4.3 Interpretation of Mode Shape Displays
There are a number of features associated with mode shape displays
that warrant a mention in the context of ensuring that the correct
interpretation is made from viewing these displays.

The first two observations concern the consequences of viewing
what is very clearly an incomplete model. Where there are no mode
shape data for some of the points which comprise the grid which
outlines the structure, the indicated result is zero motion of those DOFs
and this can be very misleading. The most obvious manifestation of this
problem can be seen at grid points where measurements have been
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made in one direction only — perhaps the x direction — while no data
exist for the other two, y and z, directions. Because there are no data for
these other directions, the corresponding motion at those points is
indicated as being zero. Quite often, when viewing an animated mode
shape display, we can see significant x-direction motion of a particular
point of interest accompanied by no movement in the other transverse
directions and, not surprisingly, we tend to interpret this as a motion
which is purely in the x-direction. There are very few displays that will
differentiate between a measured response level of zero amplitude and
the absence of any data (which by default is displayed as a zero
response). Although this may sound trivial, it can easily be the source of
serious misinterpretations of the results of a modal test; results that
may be of very good quality but which are, as is so often the case,
incomplete.

There is a second version of this same problem that is more subtle,
and is the basis of several sections in the next chapter. This second
problem is one which arises when the grid of measurement points that
is chosen to display the mode shapes is too coarse in relation to the
complexity (geometric, not mathematical) of the deformation patterns
that are to be displayed. The problem can be illustrated graphically
using a very simple example: suppose that our test structure is a
straight beam, and that we (ill-advisedly) decide to use just three
response measurement points to describe the vibrations that are
measured — one point at each end and a third point in the middle of
the beam (which we shall assume here to be uniform). If we consider
the first six modes of the beam, whose mode shapes are sketched in
Fig. 5.4, then we shall ‘see’ the mode ‘shapes’ indicated by the discrete
points in Fig. 5.4. It soon becomes clear that with this few measurement
points, modes 1and 5 look the same as each other, as do 2, 4 and 6, and
indeed all the higher modes will be indistinguishable from these first
few. This is a well-known problem of ‘spatial aliasing’ and takes its
name from the well-documented phenomenon encountered in signal
processing. For our purposes here, however, it is sufficient to note that
when viewing mode shapes of complex structures, one must always be
on guard for deficiencies of this type: it will not always be as obvious as
this illustration suggests to establish whether the density of points is
adequate for the proper discrimination of the models of interest. The
mode shapes displayed will not show evidence of anything untoward:
they will simply be difficult to distinguish from other modes, usually
those with higher natural frequencies.

The final comments in this section are a warning to beware of
misinterpretation from unusual perspectives. Wire meshes are
frequently used as the basis for mode shape displays and without the
benefit of hidden line removal, or shading (that are thankfully
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(a) (b)

Fig. 5.4 Misinterpretation of mode shapes by spatial aliasing.
(a) True beam mode shapes; (b) Displayed mode shapes

becoming more widely used in this context), these sketches can give
problems of distortion of perspective that lead to misinterpretation of
how the structure is vibrating — and these interpretations are entirely
what the mode shape displays are for.

5.5 RESPONSE MODELS
There are two main requirements demanded of a response model, the
first being the capability of regenerating ‘theoretical’ curves for the
frequency response functions actually measured and analysed and the
second being that of synthesising the other response functions which
were not measured. In general, the form of response model with which
we are concerned is an FRF matrix whose order is dictated by the
number of coordinates included in the test, n. (Note that this is not
necessarily equal to the number of modes studied, N.) Also, as
explained in Section 5.1, it is not normal practice to measure and to
analyse all the elements in the FRF matrix but rather to select a small
fraction of these, usually based on one column or row with a few
additional elements included as a backup. Thus, if we are to construct
an acceptable response model it will be necessary to synthesise those
elements which have not been directly measured. However, in principle
this need present no major problem as it is possible to compute the full
FRF matrix from a modal model using:

[hLx„ = kr MmxnL I. L\ ' / JllXlTl L Mll/Kfl
(5.27)
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5.5.1 Regenerated FRF Curves
It is usual practice to regenerate an FRF curve using the results from
the modal analysis as a means of checking the success of that analysis,
as described in Chapter 4. However, if the collected results from several
FRF curves are subjected to an averaging process, such as that
described in Section 5.1, then a new regenerated curve should be
produced and, if necessary, a new set of residuals computed (see Section
4.3.6). It should be noted at this stage that in order to construct an
acceptable response model, it is essential that all the modes in the
frequency range of interest be included, and that suitable residual
terms are added to take account of out-of-range modes. In this respect,
the demands of the response model are more stringent than those of the
modal model.

5.5.2 Synthesis of FRF Curves
One of the implications of equation (5.27) is that it is possible to
synthesise the FRF curves which were not measured. In simple terms,
this arises because if we measure three individual FRF curves such as
H^(co), Hj^(co) and then modal analysis of these yields the
modal parameters from which it is possible to generate, or ‘synthesise’
the FRF Hjj(a) , etc.. Indeed, application of this principle has
already been suggested as a means of checking the overall performance
of a modal analysis exercise.

However, it must be noted that there is an important limitation to
this procedure which can sometimes jeopardise the success of the whole
exercise. This limitation derives from the fact that only that part of the
relevant FRF which is due to the modes whose properties are available
can be computed. The remaining part, due to the out-of-range modes —
the residual contribution — is not available by this method of synthesis
and, as a result, a response model thus formed is liable to error unless
values for the relevant residual terms are available from other sources.

As an example, the result of applying this synthesis procedure to
measurements made on a turbine rotor are shown in Fig. 5.5. FRF data

and H21 , at and between the ends of the rotor, were measured
and analysed and the resulting modal parameters used to predict or
‘synthesise’ the other FRF, H22 , initially unmeasured. This predicted
curve was then compared with measurements producing the result
shown in Fig. 5.5(a). Clearly, the agreement is poor and would tend to
indicate that the measurement/analysis process had not been
successful. However, the ‘predicted’ or ‘synthesised’ curve contained
only those terms (from the complete modal series) relating to the modes
which had actually been studied from and and this set of
modes (as is often the case) did not include all the modes of the
structure. Thus our predicted curve, H22 , omitted the influence of out-
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of-range modes or, in other words, lacked the residual terms. The
inclusion of these two additional terms (obtained here only after
measuring and analysing H22 itself) resulted in the greatly improved
predicted vs. measured comparison shown in Fig. 5.5(b).

The appropriate expression for a ‘correct’ response model, derived
via a set of modal properties is thus:

[#]-[®][(1? - )]"*K +[Ses] (5.28)

In order to obtain all the data necessary to form such a model, we
must first derive the modal model on which it is based (as described in
Section 5.1) and then find some means of determining or estimating the
elements in the residual matrix, [.Res] . This latter task may be most
accurately achieved by measuring all (or at least something over half) of
the elements in the FRF matrix, but this would constitute a major
escalation in the quantity of data to be measured and analysed. A
second possibility, and a reasonably practical one, is to extend the
frequency range of the modal test beyond that over which the model is
eventually required. In this way, much of the content of the residual
terms is included in separate modes and their actual magnitudes can be
reduced to relatively unimportant dimensions. The main problem with
this approach is that one does not generally know when this last
condition has been achieved, although a detailed examination of the
regenerated curves using all the modes obtained and then again less
the highest one(s) will give some indications in this direction.

A third possibility is to try to assess which of the many FRF
elements are liable to need large residual terms and to make sure that
these are included in the list of those which are measured and
analysed. We noted earlier that it is the point mobilities which are
expected to have the highest-valued residuals and the remote transfers
which will have the smallest. Thus, the significant terms in the [Res]
matrix will generally be grouped close to the leading diagonal, and this
suggests making measurements of most of the point mobility
parameters. Such a procedure would seldom be practical unless
analysis indicates that the response model is ineffective without such
data, in which case it may be the only option.

5.5.3 Direct Measurement
Finally on this topic, it should be noted that it is quite possible to
develop a response model by measuring and analysing all the elements
in one half of the FRF matrix (this being symmetric, only one half is
essential) and by storing the results of this process without constructing
a modal model, or ‘modal data base’ as this is sometimes called. Such a
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Fig. 5.5 Synthesised FRF plot.
(a) Using measured modal data only; (b) After inclusion of
residual terms
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procedure clearly solves the residual problem discussed above but it is
likely to present another one by introducing inconsistencies into the
model. Unless the structural behaviour, the measurements and the
analysis are all of a remarkable calibre, the small differences described
in Section 5.1 will be locked into the response model thus formed and
will undoubtedly cause serious difficulties when that model is put to
use. At the very least, the natural frequencies and damping factors of
the individual modes should be rationalised throughout the model but
even that is insufficient to ensure a satisfactory model.

Many of the same comments apply to the very crude method of
obtaining a response model by simply storing the raw measurements
made of each of the elements in the FRF matrix, a technique which
bypasses the data reduction and smoothing facilities afforded by modal
analysis. Although there are some instances where this is a viable
procedure, they are rare and rather special.

5.5.4 Transmissibilities
One vibration parameter which has not been mentioned so far in this
book is that of transmissibility. This is a quantity which is quite widely
used in vibration engineering practice to indicate the relative vibration
levels between two points. It is perhaps surprising that transmissibility
has not featured in our studies or descriptions thus far.

In general, transmissibility is considered to be a frequency¬
dependent response function, Tj^ (co) , rather like the frequency
response functions that we rely on so heavily, which defines the ratio
between the response levels at two points (or DOFs), j and k. Simply
defined, we can write:

v"

w)

but, in fact, we need also to specify the excitation conditions that give
rise to the two responses in question and these are missing from the
above definition, which is thus not complete, or rigorous. It does not
give us enough information to be able to reproduce the conditions which
have been used to measure Tj^ (co) . If the transmissibility is ‘measured’
during a modal test which has a single excitation, say at DOF i, then we
can define the transmissibility thus obtained more precisely, as
i Tjk (®) :

iT jk (“) hM
Hki (“) (5.30)
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and this * qT^((d) , where q is a different DOF to i.
Plots of two examples of this transmissibility function are shown in

Fig. 5.6, which also displays the natural frequencies of the structure
which do not coincide with peaks on the transmissibilities. Thus we can
see that there is no such thing as a simple transmissibility, Tj^ (w) , and
so this may explain why it has not been more extensively used in modal
analysis. By studying the detailed expression (5.30), we can see that in
general the transmissibility depends significantly on the excitation
point (or points): hence the preceding conclusion. However, there are
some special circumstances which, when encountered, result in a
relaxation of that general result and lead to a situation where the
transmissibility becomes almost independent of the excitation
conditions. We can understand this result if we consider the expression
that is used to compute each of the FRF properties which make up the
expression in (5.30):

_ ^21,1
^40,1 t®)

_ #21,5 (<»)
# 40,5 (®)

Fig. 5.6 Transmissibility plots

(5.31)

At frequencies of vibration close to a natural frequency, , we find an
approximate expression for the transmissibility as:

’hJr

T- (n) Hji^ '1 y ^kr ^ir
r L2 - (B2
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T ~i* jk v^/cijaor ~ ± i .r ^kr for Hr
[2 2IICO r - CD J

(5.32)

This interesting result suggests that there are situations in which
transmissibility may be useful in modal testing, but only when the
appropriate conditions are satisfied: here, a structure which is
sufficiently lightly damped that near resonance only one mode
dominates the response.

5.5.5 Base Excitation
The one application area where transmissibilities can be used as part of
modal testing is in the case of base excitation. Base excitation is a type
of test where the input is measured as a response at the drive point,
x0(i) , instead of as a force, fy(t) , as illustrated in Fig. 5.7. A schematic
model for each of these configurations is shown in Fig. 5.8 and the
analysis which follows refers to this simple system, indicating how a
more general analysis can be made for the more realistic configuration
of a real structure. For the essential system/structure shown in
Fig. 5.7(a), we can construct mass and stiffness matrices for the case
shere x0 is grounded, [M} and [A-] , and these, in turn, will yield the
modal properties of interest, [O] and [A,], and the associated FRF
characteristics, [H(<o)] . If we turn next to the second model (in
Fig. 5.7(b)) which relates to the base excitation configuration, we see
that we can construct two different system matrices, [M '] and [A'] ,
which have their own (different) modal and FRF properties, [O'] , [V]
and [#'(<»)] .

We can now re-write the equations of motion for this second
configuration, using new coordinates, {y} instead of {x} , where:

(5.33)

where = 1.0 if xt and x0 are in the same direction.
Then, the equations of motion for the base excitation configuration

can be expressed as:

[M]{y}+[A]{y} = -x0[M]{^} (5.34)

If we now describe steady forced vibration, where the excitation is
provided by a harmonic notion of the base: XQ(t)=X()emt , then we
obtain:
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(a) (b)

Fig. 5.8 Mathematical model for base excitation test

(jt]-<»2M)M=«>2x0[^

or

[^(m)]-1 ({X}-Xo{g}) = 0)2 Xo [M]{g}

which can be written:

M’1 .[HWf-1 fe).[M]W.W (5.35)
©2X0

where
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{QhWW

A typical element, Qi (co) , in the vector {Q(co)} , can be related to the
modal properties of the required fixed-base configuration of the test
structure as follows:

QM=L =LLn 2V^ = L n—ri
j j r [^r-^ ) r |®r )

(5.36)

where

dr = X
j

Thus it is possible to determine Qj(co) from measurements of and
Xo, and if we treat Qi (o>) as if it were an FRF, then we can extract the
modal properties of natural frequency, damping factor and unsealed
mode shape for each of the modes that are visible in the frequency
range of measurement. It should be emphasised that the modes that are
found in this way relate to the structure in its fixed-base configuration
and not the moving-base condition in which the measurements are
made. Special considerations must be applied for any DOFs which are
not in the same direction as the base excitation, but the basis of a
method for conducting modal analysis via base excitation tests has been
illustrated. The fact that the excitation force is never measured is
responsible for the lack of formal scaling of the mode shapes, a
limitation that can be corrected by suitable calibration.

5.6 SPATIAL MODELS
It would appear from the basic orthogonality properties of the modal
model that there exists a simple means of constructing a spatial model
from the modal model, but this is not so. From Section 2.3 we have that:

(5.37)

from which it would appear that we can write:

(5.38)
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Indeed, we can, but this latter equation is only applicable when we have
available the complete N x N modal model. This is seldom the case and
it is much more usual to have an incomplete model in which the
eigenvector matrix is rectangular and, as such, is non-invertible. Even
if we constrain the number of modes to be the same as the number of
DOFs (an artificial and often impractical restriction) so that the mode
shape matrix is square, the mass and stiffness matrices produced by
equation (5.34) are mathematical abstractions only and carry very little
physical significance, unless n is almost equal to N .

One step which can be made using the incomplete data is the
construction of ‘pseudo’ flexibility and inverse-mass matrices. This is
accomplished using the above equations in the form:

[^]nxn = [®]nxm [^r ]mxm [plnxzi
(5.39)

[^]nxzi — [^zixm [®Lxn

It is clear that a pair of pseudo matrices can be computed using the
properties of just a single mode. Further, it can be seen that the
corresponding matrices are simply the arithmetic sums of those for each
mode individually. Because the rank of each pseudo matrix is less than
its order, it cannot be inverted and so we are unable to construct
stiffness or mass matrices from this approach.

Further discussion on the construction of spatial models may be
found in the section concerned with the correlation of theory and
experiment, Section 6.2.

5.7 MOBILITY SKELETONS AND SYSTEM MODELS
We have seen earlier how mobility and other FRF plots tend towards
mass-like or stiffness-like behaviour at frequencies well away from
resonance (and antiresonance). We have also suggested (in Section 4.1),
that a ‘skeleton’ of mass and stiffness lines can be constructed based on
the FRF curve and that this can be used to check the overall quality of
the measured curve. We shall now examine these skeletons in rather
more detail and show how they may be used to construct simple spatial
models of a test structure.

We shall establish the basic features of the skeleton using a very
simple mass-spring-mass 2DOF system, shown in Fig. 5.9(a) and for
which the point mobility Y^ has the form shown in Fig. 5.9(b).

Certain basic features of this plot may be predicted from knowledge
of the system, without necessarily computing the FRF in detail. These
features are that:
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(a )

Fig. 5.9 Basic mass-spring-mass system, (a), and mobility FRF plot, (b)

(i) there will be an antiresonance at = ky /m2 (note that this
frequency is independent of the value of mi and would still apply
if mi were doubled, or trebled or replaced by any combination of
masses and stiffnesses);

(ii) there will be a resonance at cor - k(l/ mi +1/ m2) ;
(iii) at very low frequencies (0)«®^) the mobility FRF will be

dominated by the rigid body motion of the system, since it is
ungrounded, and will approximate to

yn(<»«®A)= r (5.40)
co (mi + m2)

(iv) similarly, at high frequencies, the mobility FRF will be dominated
by the mass of the drive point, so

Yn (co » 07?)= (5.41)

Now, it is possible to draw a skeleton of mass and stiffness lines on this
FRF plot, changing from stiffness to mass at each resonance and from
mass back to stiffness at each antiresonance, as sketched in Fig. 5.10(a).

The question is raised as to whether, when we construct such a
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skeleton starting from the low frequency asymptote of the FRF curve,
the final arm (above cor) will also be asymptotic to the mobility curve as
in Fig. 5.10(b), or not (as in Fig. 5.10(a)). If it can be shown that the
former case applies, then it is likely that a more general rule which, in
effect, requires the skeleton to ‘follow’ the FRF curve. The proof of such
a property may be made using the 2DOF system, and referring to
Fig. 5.11(a), as follows.

Fig. 5.10 Concept of the mobility skeleton

Suppose we define the skeleton as consisting of an initial mass line
(mi) for a mass of (m^ +m2) plus a final mass line (m^) corresponding
to the mass , connected by a stiffness line ( k{ ) which meets the first
branch at the known antiresonance, co A . This skeleton satisfies the
overall requirement that it ‘follows’ the FRF away from resonance and
antiresonance but we have not yet imposed or met the condition that
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Fig. 5.11 Geometry of the mobility skeleton

the change from stiffness (k{) to mass (m^) occurs at the resonant
frequency, <br . Suppose these two branches meet at cos . Using the
geometry of the skeleton shown in Fig. 5.11(b), we see that

CDAB = BC = BD =~2

Now
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AB = P (log<os - logoa ) = P log—
“A

Also

CD = p (log]¥m2(os)|- log|¥mi(©s)|)
I ¥7712(0)5)1

O1 m1 + m2= Plog L—t—4 = p log

So

2p log = p log (5.42)

or

2 2 ml +m2 + m2)
0) c = 0) < =° m1 m.im2

2= aR (5.43)

Hence, the skeleton connecting the extreme asymptotic behaviour of the
FRF changes from mass-like to stiffness-like and back to mass-like
elements at antiresonance and resonance, respectively.

This basic idea can be extended to more complex systems and the
general rule for constructing skeletons is that the first will be mass-like
(slope - —1 on mobility or alternate values for other FRF forms) or
stiffness-like (mobility slope = +1) depending upon whether the
structure is freely supported or grounded, respectively. Thereafter, the
slope of the skeleton changes by +2 at each antiresonance and by -2 at
each resonance. Thus, for a point mobility the skeleton branches are all
of slope +1 or -1 but for a transfer mobility the slopes will be +1, -1, -3,
-5, ... and so on as the absence of an antiresonance between two
resonances will cause a general downward drift of the skeleton (and, of
course, of the FRF curve itself). By way of example, two of the sets of
FRF curves shown in Fig. 2.32 are repeated in Fig. 5.12 together with
their skeletons.

It will be noted from the first example above, Fig. 5.9(a), that the
physical system has three components, two masses and a spring ( ,
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Fig. 5.12 Mobility skeletons for 6DOF system
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Fig. 5.13 Mobility skeletons for 2DOF system.
(a) Mobility curve and skeleton; (b) Possible system
configuration; (c) Possible system configuration
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m2 and ) and that the corresponding skeleton has two mass lines
and one spring line (m{, m2 and &{). While it must be acknowledged
that there is no direct correspondence between the two similar sets of
parameters, they are related and each set may be derived from the
other. Indeed, this is a general rule that the skeleton for the point FRF
contains just as many mass and stiffness links as there are
corresponding elements in the physical system. This fact provides us
with a mechanism for deriving spatial models from measured data.

It must be observed at the outset that it is left to the user to decide
upon the configuration of the suitable model: analysis of the skeleton
will then furnish the values for the model parameters. Consider the
FRF indicated in Fig. 5.13(a).

Clearly, this relates to a 2DOF system such as that shown in
Fig. 5.13(b)) or the one shown in Fig. 5.13(c).

In the first case, it can be shown that the model parameters may be
determined from the skeleton parameters using the following formulae:

~ m'2
^2 ^21

rn'i
( nn n

(»1 + a>2 -

^2 = Vi,,

m2 =(*1)+^
(5.44)

Alternatively, if the second configuration was the correct one, then the
model parameters would be

ky = k{

= m2

k2 +®2 (5.45)

m -«2 - —
aA

Hence the solution obtained is not unique and additional data would be
required in the example above in order to establish which of the two
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configurations was the more representative. The additional data could
be provided by other FRF plots. In his book, Salter [3] develops the
skeleton idea in greater detail, presenting a useful additional tool to the
modal analyst.
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CHAPTER 6

Applications

6.1 INTRODUCTION
In this chapter, we turn our attention to the destination of the final
results from conducting a modal test: namely, the problem, which we set
out to resolve. As mentioned in the first chapter, there are many
possible application areas for modal tests and the major ones were
described there. We shall now consider these in turn and examine in
more detail some of the specific procedures and methods which are
available for each. As already mentioned in the introduction to this
book, many of the methods and procedures available in modal testing
and analysis have become extensive subjects in their own right, and
this is particularly true in some of the application areas. As a result, it
is not feasible to include in a chapter such as this details or even
mention of all the many different methods approaches and variants
that have been explored and reported in the past 15 years. Hence, this
chapter seeks to guide the reader through some of the more established
methods and to guide him or her towards the more advanced ones
through a judicious selection of references.

It should be noted at the outset, however, that the application of the
techniques described below to practical engineering structures is often
found to be more difficult or more onerous than at first expected. This is
due to many factors, not least the considerable volume of data usually
required for real cases (by comparison with that used in simpler
illustrative examples) and the inevitable incompleteness of the data
which can be acquired under typical practical testing conditions and
constraints. Nevertheless, this ‘fact of life’ should not be permitted to
provide a deterrent to the ambitious or the tentative application of any
of the procedures listed below. The techniques can be used with great
effect, especially if the user is fully aware of the extent or limitations of
his of her data. Furthermore, dramatic advances are still being made in
measurement and analysis techniques which will reduce the limitations
and enhance both the availability and quality of good data, thus
enabling the modal analyst to make even more precise and confident
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assessments of structural dynamic behaviour.

6.2 COMPARISON AND CORRELATION OF EXPERIMENT
AND PREDICTION

6.2.1 Different Methods of Comparison and Correlation
Probably the single most popular application of modal testing is to
provide a comparison between predictions for the dynamic behaviour of
a structure and those actually observed in practice. Sometimes this
process is referred to as ‘validating’ a theoretical model, although to do
this effectively several steps must be taken. The first of these steps is to
make a direct and objective comparison of specific dynamic properties,
measured vs. predicted. The second (or, perhaps, still part of the first) is
correlation, which means to quantify the extent of the differences (or
similarities) between the two sets of data. Then, the third step is to
identify or to locate the sources of any discrepancies between the two
models and the final step is make adjustments or modifications to one
or other set of results in order to bring them closer into line with each
other. These last two steps are often referred to as ‘updating’, although
‘reconciliation’ is perhaps a better description. When this is achieved,
the theoretical model can be said to have been validated and is then fit
to be used for further analysis. In this section we shall be concerned
with the first and second of these steps, dealing with the third and
fourth steps in the next section.

In most cases, a great deal of effort and expense goes into the
processes which lead to the production of an experimentally-derived
model on the one hand (subsequently referred to as the ‘experimental’
model or data) and a theoretically-derived (or ‘analytical’ or ‘predicted’)
model on the other. This being so, it is appropriate to make as many
different types or levels of comparison between the two sets of data as
possible. As discussed much earlier in the work, we have identified
three types of dynamic model, loosely called ‘Spatial’, ‘Modal’ and
‘Response’ models. It is now convenient to return to this classification
and to try to make comparisons between experiment and prediction for
each (or at least more than one) of these types of model. Thus we shall
discuss comparisons of response characteristics and of modal properties,
as both of these provide many opportunities for useful correlation
between experiment and theory. Comparisons of spatial properties are
more difficult, however, and we shall leave discussion of this aspect
until the next Section (6.3).

Whichever medium is used for comparison and correlation purposes,
either one or the other model will have to be developed fairly
extensively from its original form and what is the most convenient
format for one case will often be the least accessible for the other. This
situation derives from the different routes taken by theoretical and
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experimental approaches to structural vibration analysis, as shown in
Figs. 2.1 and 2.2. However, in closing these general remarks, it is
appropriate to reinforce the recommendation to make as many different
types of comparison as possible and not just to rely on one, usually the
first one that comes to hand, or mind.

One further comment, and concept, which should be introduced
here (although it will be discussed in more detail in subsequent
sections) is that of verifying the models to be compared. The concept of
a verified model is different to that of a validated model in the following
respects: a model can be said to be verified if it contains the correct
features, most importantly the appropriate number and choice of DOFs,
to render it capable of representing the dynamic behaviour of the
structure; a model is said to be valid if the coefficients in that model
are such as to provide an acceptable representation of the actual
behaviour; ‘acceptable’ being to some extent a matter of judgement and
certainly to be determined afresh for each individual application. It will
be seen that a model can only be validated after it has been verified.
This means that we should not embark on lengthy comparison or
correlation procedures unless we are first satisfied that the two models
to be used are compatible with each other, and their intended roles.

6.2.2 Comparison of Modal Properties
While there is no compelling reason for choosing one rather than the
other, we shall start our comparison procedures with those based on
modal data and follow with those which use response properties.
Although the response data are those most directly available from test
for comparison purposes, some theoretical analysis packages are less
than convenient when it comes to predicting FRF plots. This is largely
because of the requirement that all (or at least a large proportion) of the
modes must be included in the calculation of a response characteristic.
By contrast, modal properties can be predicted individually and
comparisons can be confined to specific frequencies or to specific
frequency ranges with much greater facility for the analyst.
Nevertheless, such a comparison of modal properties does place
additional demands on the experimental route as it requires the
measured data to have been subjected to a modal analysis or curve¬
fitting procedure in order to extract the corresponding modal properties
from the test. In spite of this requirement, comparisons of modal
properties are perhaps the most common and we shall now describe a
number of methods which may be employed to that end.

6.2.2.1 Comparisons of natural frequencies
The most obvious comparison to make is of the measured vs. the
predicted natural frequencies. This is often done by a simple tabulation
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of the two sets of results but a more useful format is by plotting the
experimental value against the predicted one for each of the modes
included in the comparison, as shown in Fig. 6.1(a). In this way it is
possible to see not only the degree of correlation between the two sets of
results, but also the nature (and possible cause) of any discrepancies
which do exist. It is important to stress, however, that the points
plotted in this way must be of the measured and predicted natural
frequencies of corresponding (or ‘correlated’) modes: it is not sufficient
simply to plot the first, second, third, ... measured natural frequencies
against the first, second, third ... predicted values as there is no
guarantee that the first three measured modes correspond one-for-one
with their predicted counterparts. Some positive identification of each
measured mode with its predicted counterpart is essential, to provide a
set of Correlated Mode Pairs (CMPs), and in order to achieve this,
recourse must usually be made to the mode shape correlation methods
discussed in the next section. An example of such a situation is shown
in Figs. 6.1(b) and (c), where the first of these graphs shows the natural
frequencies plotted simply in ascending order, while the second shows
them correctly paired (using information about their modes shapes —
not shown here) with the poorer level of correlation which actually
exists in this case.

(a)

Fig.6.1 Measured and predicted natural frequencies,
(a) General
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(b)

(c)

Fig. 6.1 Measured and predicted natural frequencies.
(b) Ordered frequencies; (c) Correlated mode pairs
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Once sorted, the points should he on or close to a straight line of
slope 1. If they lie close to a line of a different slope then almost
certainly the cause of the discrepancy is an erroneous material property
used in the predictions. If the points lie scattered widely about the 45°
straight line then there is probably a serious failure of the model to
represent the test structure and a fundamental re-evaluation is called
for. If the scatter is small and randomly distributed about a 45° line
then this may be expected from a normal modelling and measurement
process. However, a case of particular interest is where the points
deviate slightly from the ideal line but in a systematic rather than a
random fashion as this situation suggests that there is a specific
characteristic responsible for the deviation and that this cannot simply
be attributed to experimental errors.

There is an inclination to quantify the deviation of the plotted
points from the ideal straight line as a means of assessing the quality of
the comparison in a single correlation factor. Although this is indeed
useful, it cannot replace the benefit gained from the plot itself as
(without employing complicated functions) it is generally insensitive to
the randomness or otherwise of the deviations and this is an important
feature.

Another possible form of plotting these same data is provided by the
Natural Frequency Difference (NFD) diagram — as shown in Fig. 6.2.
This is a table which plots simply the natural frequency difference
between all possible combinations of experimental and analytical model
modes. This can be used in the automatic selection of correlated mode
pairs which is a feature in more advanced correlation packages.

Fig.6.2 Natural Frequency Difference (NFD) diagram
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6.2.2.2 Comparisons of mode shapes — graphical
When the above procedure is applied in practical cases, it will often be
found more difficult than first anticipated because of the problems of
matching the experimental modes with their analytical counterparts.
Whereas on simple structures with well-separated modes this pairing
often presents no difficulty, on more complex structures — especially
ones with closely-spaced natural frequencies — ensuring that the
correlated mode pairs are correctly identified becomes more difficult
and requires the additional information in each case of the mode shape
as well as the natural frequency. Hence it is appropriate to make
comparisons of mode shapes at the same time as those of natural
frequencies.

In this case, we have rather more data to handle for each mode and
one possible way of performing the comparison is by plotting the
deformed shape for each model — experimental and predicted — along
the lines described in Chapter 5, and overlaying one plot on the other.
The disadvantage of this approach is that although differences are
shown up, they are difficult to interpret and often the resulting plots
become very confusing because there is so much information included.
An alternative plot comprising a single picture which is a display of the
mode shape difference can also be difficult to interpret. A more
convenient approach is available by making an x-y plot along similar
lines to that used for the natural frequencies in which each element in
the mode shape vector is plotted, experimental vs. predicted, on an x-y
plot such as is shown in Fig. 6.3. The individual points on this plot
relate to specific DOFs on the model and it is to be hoped that they
should lie close to a straight line passing through the origin. If, as is
often the case, both sets of mode shape data consist of mass-normalised
eigenvectors, then the straight line to which the points should be close
will have a slope of ±1. Once again, the pattern of any deviation from
this requirement can indicate quite clearly the cause of the discrepancy:
if the points lie close to a straight line of slope other than ±1, then
either one or other mode shape is not mass-normalised or there is some
other form of scaling error in the data. If the points are widely scattered
about a line, then there is considerable inaccuracy in one or other set
and if the scatter is excessive, then it may be the case that the two
eigenvectors whose elements are being compared do not relate to the
same mode.

This form of presentation has particular value when the deviations
of the points from the expected line are systematic in some way, such as
is the case in Fig. 6.3(b). In this event it can be useful to superimpose
the plots for several modes so that the basis of the comparison is
broadened, and this has been done in Fig. 6.3(b) for the first three
modes of the structure. We now see that three of the points on the
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structure (4, 5 and 6) systematically produce a poor correlation between
experiment and prediction although we are not yet in a position to
identify which set are in error. From Fig. 6.3(b) it is clear that most of
the points for DOFs 4, 5 and 6 do in fact lie close to a straight line but
one with a slope considerably different from 45°. If the discrepancy is
due to poor analytical modelling (the natural assumption of the
experimentalist!), then it might reasonably be expected to differ in
extent from one mode to the next. However, this is not the case here
and it can be seen that the deviations are consistent with the result
which would follow from an incorrect scaling factor on the measured
FRF plots pertaining to points 4, 5 and 6 (since all modes would be
equally affected by such an error). A repeat of the measurement (and
modal analysis) phase in this case, together with the inclusion of some
additional coordinates, resulted in the revised plot shown in Fig. 6.3(c):
clearly, a much more satisfactory comparison and one achieved using
the original analytical model.

At this juncture, it should be observed that the above method
assumes implicitly that the mode shapes in both cases are real (as
opposed to complex) and while it is highly likely that the results from a
theoretical analysis will indeed comply with this assumption, those
from an experimental source will, in general, not be so simple. Although
it is possible to envisage a complex version of the type of plot discussed
above, by using a third axis to display the imaginary part of the
complete eigenvector elements, this is not recommended as it tends to
disguise the essential conflict which is inherent in comparing complex
(experimental) data with real (predicted) values. It is necessary to make
a conscious decision on how to handle this particular problem and that
usually adopted is to ‘whitewash’ the measured data by taking the
magnitude of each eigenvector element together with a + or — sign,
depending on the proximity of the phase angle to 0° or 180°. In many
cases this is adequate but it is not satisfactory for highly complex
modes: no form of direct graphical comparison between these modes
and the real data produced by a typically undamped theoretical model
is likely to be effective. In such cases, it becomes necessary to employ
one of the complex-to-real transformation or ‘realisation’ procedures
which were discussed in Section 5.2, or to rely more on the numerical
correlations that are described next.

6.2.2.3 Comparison of mode shapes — numerical correlation
(MAC)

Several workers have developed techniques for quantifying the
comparison between measured and predicted mode shapes (in fact,
these methods are useful for all sorts of comparisons — not just
experiment vs. theory — and can be used for comparing any pair of
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(a)

(b)

(c)

Fig. 6.3 Measured and predicted mode shape vectors.
(a) General case; (b) Systematic errors; (c) Corrected data
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mode shape estimates). As an alternative to the above graphical
approach, we can compute some simple statistical properties for a pair
of modes under scrutiny. The formulae given below assume that the
mode shape data may be complex, and are based on a comparison
between an experimentally-measured mode shape, {y^}, and a
theoretically-predicted or analytical one, {vp X} •

The first formula is for a quantity sometimes referred to as the
‘Modal Scale Factor’ (MSF) and it represents the ‘slope’ of the best
straight line through the points as plotted in Fig. 6.3. This quantity is
defined as:

MSF(X,A)=

>1

(6.1a)

where n is the number of DOFs for which both A and X data are
available, and there are two possible expressions relating the two mode
shapes, depending upon which is taken as the reference one:

MSF(A,X) =

>1

(6.1b)

It should be noted that this parameter gives no indication as to the
quality of the fit of the points to the straight line; simply its slope.

The second parameter is referred to as the ‘Mode Shape
Correlation Coefficient’ (MSCC) or, more-popularly, as the ‘Modal
Assurance Criterion’ (MAC) and this provides a measure of the least¬
squares deviation or ‘scatter’ of the points from the straight line
correlation. This parameter is defined by:

MAC(A,X) =

2n

(6.2a)
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or

MAC(A,X)= MHl2 (6.2b)

and is clearly a scalar quantity, even if the mode shape data are
complex. In the same way that the Modal Scale Factor does not indicate
the degree of correlation, neither does the Modal Assurance Criterion
discriminate between random scatter being responsible for the
deviations or systematic deviations, as described earlier. Thus, whereas
these parameters are useful means of quantifying the degree of
correlation between two sets of mode shape data, they do not present
the whole picture and should preferably be considered in conjunction
with the plots of the form shown in Fig. 6.3. (The close similarity
between the MAC and the coherence function used in signal processing,
Chapter 3, should be noted here.)

It is worth considering two special cases: (i) that where the two
mode shapes are identical and (ii) where they differ by a simple scalar
multiplier. Thus in case (i), we have:

for which it can be seen that

MSF(X,A)= MSF(A,X) =1

and also that:

MAC(X,A) = 1

In the second case, (ii), we have {vyy} = y{Va) and we find that

MSF(X,A) = y while MSF(A,X) = -
Y

although, since the two modes are still perfectly correlated, we still
have:

MAC(X,A) = 1
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In practice, typical data will be less ideal than this and what is expected
is that if the experimental and theoretical mode shapes used are in fact
from the same mode, then a value of the Assurance Criterion of close to
1.0 is expected, whereas if they actually relate to two different modes,
then a value close to 0.0 should be obtained. Given a set of
experimental modes and a set of predicted modes, we can compute
a set of m% x mA Modal Assurance Criteria and present these in a
matrix which should indicate clearly which experimental mode relates
to which predicted one. Such a table is shown in Fig. 6.4(a), together
with some of the common graphical presentations used to display these
data, in Figs. 6.4(b) and (c). It is difficult to prescribe precise values
which the Assurance Criterion should take in order to guarantee good
results. Generally, it is found that a value in excess of 0.9 (or 90%)
should be attained for well-correlated modes and a value of less than
0.1 (or 10%) for uncorrelated modes. In some situations, the boundaries
for ‘acceptable’ and ‘non’ correlation are quoted as above 80 per cent
and less then 20 per cent, respectively. However, the significance of
these quantities depends considerably on the specific data points used
in the correlation (see below) and on the subsequent use planned for the
model — some are much more demanding than others — and so
considerable caution should be used in attaching quantitative
significance to the absolute values of MAC obtained in practical cases.
The greatest value of these coefficients lies in their use for comparison
purposes.

Analytical
mode Experimental mode number

number
1 2 3 4 5 6 7 8 9 10

1 100 0 1 0 0 0 0 0 0 0
2 0 100 1 1 0 0 0 0 0 0
3 0 1 94 3 2 0 0 0 0 0
4 0 0 2 92 5 3 0 0 0 0
5 0 0 0 4 86 7 4 0 0 0
6 0 0 0 0 7 81 9 5 0 0
7 0 0 0 0 0 10 75 10 5 0
8 0 0 0 0 0 0 12 71 11 5
9 0 0 0 0 0 0 0 14 68 11

10 0 0 0 0 0 0 0 0 16 65

MODAL ASSURANCE CRITERION (MAC) %
(a)

Fig. 6.4 Common presentations of MAC properties,
(a) Tabular



427

Predicted Modes

Fig. 6.4 Common presentations of MAC properties,
(b) Chart; (c) Isometric; (d) Reduced data

It is worth noting some of the causes of less-than-perfect results
from these calculations. Besides the obvious reason — that the model is
incorrect — values of the MAC of less than the expected value of unity
(or other elements being noticeably greater than the expected zero) can
be caused by:

(i) non-linearities in the test structure;
(ii) noise on the measured data;
(iii) poor modal analysis of the measured data; and
(iv) inappropriate choice of DOFs included in the correlation.
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6.2.2.4 Features of the MAC
AutoMAC
In view of the widespread use of the MAC, and of the risk of its
misinterpretation, it is appropriate to include here a fuller discussion of
some of the features of this approach.

The first consideration concerns the choice of DOFs which are
included in the calculation. It is clear that if all the degrees of freedom
in the model are included then a very accurate measure of the
correlation between the two vectors will result. However, it is also clear
that a different result will be obtained for the MAC if only a small
fraction of the full set of DOFs are included. A second set of results from
the case shown above are now presented in Fig. 6.4(d), this time using
only about 30 per cent of the DOFs which were included in the earlier
result. From this new calculation it is immediately clear that a much
more confusing result has been obtained, especially in respect of the
purpose of the table in identifying the correlated mode pairs: there are
several cases where a given analytical mode appears to correlate
equally well with several of the experimental modes. The problem we
have encountered here is a spatial version of the time-signal-processing
problem of aliasing which was discussed in Chapter 3. Simply put, the
problem here is that there are insufficient data points (measured DOFs)
for us to be able to discriminate between the different modes. The
solution is equally simple: it is necessary to include more DOFs in the
correlation, and that is what was done in the first version of this
example, shown in Fig. 6.4(c).

In practical terms, there is some difficulty in deciding how many, or
more precisely, which DOFs need to be included in order to avoid the
spatial aliasing problem. A detailed procedure for answering this
question is given later, in Section 6.6, but here it will suffice to show
how the MAC can be used to check whether a given selection of DOFs is
adequate, or not. This is done using a version of the MAC called the
AutoMAC in which a set of mode shape vectors are correlated with
themselves. If, for example, we take the mode shape vectors for the
analytical model but defined only at the DOFs which are to be used in
the correlation with the experimental model (i.e. those DOFs which are
included in the modal test) and compute the MAC table with
themselves, we produce results such as those shown in Figs. 6.5(a) and
(b). In the first of these, (a), a ‘full’ set of DOFs is included while in the
second and third ones, (b) and (c), only a reduced subset that were used
in the above example are included. From these AutoMAC plots we
observe a number of features: (i) all the diagonal values are identically
unity — they must be 100 per cent, by definition, because each mode
shape must correlate perfectly with itself; (ii) the AutoMAC matrix is
symmetric and (iii) there are a number of non-zero off-diagonal terms,
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Fig. 6.5 Presentation of MAC and AutoMAC data.
(a) AutoMACA for full set of 102 DOFs; (b) AutoMACA for
reduced set of 72 DOFs; (c) AutoMACA for reduced set of 30
selected DOFs; (d) AutoMAC^ for reduced set of 30 selected
DOFs; (e) MAC for reduced set of 30 DOFs

which means that some of the modes appear to exhibit a degree of
correlation with others, a result which is not immediately expected,
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since the modes are supposed to be ‘orthogonal’ to each other (see
Chapter 2). However, there are two reasons why this orthogonality
property does not translate to a perfectly diagonal AutoMAC matrix.
First, is because the orthogonality property is only strictly applicable
when the mass matrix is used (see equation (2.32)), and second, because
the orthogonality condition is only applicable when all the DOFs are
included in the calculation. We shall return to the question of the mass
matrix later, but for the moment our interest is focused on the matter of
the selection of the DOFs that are or should be included. In the limit, it
can be seen that if we only define each mode shape by the amplitudes at
just two DOFs, then most modes would look very similar to each other
and, indeed, if we did a formal correlation, would be found to be highly
correlated with roughly half of all the modes included in the process. It
is clearly necessary to include sufficient DOFs to ensure the effective
discrimination between the various modes. In fact, it is necessary to
include in the selection of measured DOFs only those which are
required to ensure that the eigenvector submatrix , which is
formed from:

[^1]nxm t^lnxCN-m) 1
[^2 l^-nixzn 1^4 ](?7-n)x(Af-m)

where n represents the included DOFs, and m the measured modes, is
non-singular. As shown in Section 6.6.2, achieving this condition is not
a trivial matter, but the degree to which a given choice of DOFs
satisfies it can be readily demonstrated by using the AutoMAC.
Figs. 6.5(c), (d) and (e) show the suitability of the selected DOFs for an
industrial structure, first on the FE model results and then on the
experimental data themselves, both results confirming that the
relatively small number of DOFs included in the correlation are
suitable for the task of matching the correlated mode pairs.

Normalised MAC
Reference was made in the previous section to the absence of the mass
matrix in the MAC calculation, an absence which means that the MAC
is not a true orthogonality check. It is possible to remedy this limitation
by including information which may be available on the mass of the
system or, equally, of its stiffness, but to do so is relatively expensive,
and constitutes a significant extension to the effort required to perform
these checks. Bearing in mind the essentially comparative nature of the
MAC coefficients, this extra effort is seldom warranted but in more
advanced cases, including those where an automatic correlation
procedure is sought, and where the numerical values of the correlation
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coefficients are likely to be used in subsequent stages of validation, the
extension of the concept to the mass-normalised version may be
considered. The formula for this version of the MAC, sometimes
referred to as the Normalised Cross Orthogonality (NCO), is given by:

NCO AX-NCO(A,X) - (6-3)

where the weighting matrix, [W], can be provided either by the mass or
stiffness matrices of the system.

The main difficulty to be overcome, even in those cases where a full
mass and/or stiffness matrix is available from the analytical model, is
that of reducing or condensing this mass matrix to the order of the
specific DOFs for which data are available. A Guyan-type or equivalent
reduction must be made if the mass matrix is to be used explicitly. One
of the more practical approaches uses the SEREP-based reduction
process discussed in Section 5.3. In this approach, a pseudo-mass
matrix of the correct size is computed from the simple formula:

[mk]= (6.4)

using either the limited measured eigenvectors or the corresponding
analytical ones (preferred because of their greater accuracy). This
pseudo-mass matrix can then be used in the NCO calculation as a
weighting matrix and a readily-accessible version of a Normalised IMAC— sometimes referred to as the SEREP-Cross-Orthogonality (SCO)
coefficient — is thereby computed:

I I?

SCO(A, X) = ---L f J (6.5)(fa X }T W W {v X A }T W W {V a })
Examples of both AutoMAC and of AutoSCO are shown in Figs. 6.6(a)
and (b).

Improved MAC (IMAC)
Sometimes, the MAC values computed according to the above formulae
belie the level of correlation which is evident from a visual inspection of
the actual mode shapes, particularly when viewed in animation. In
these situations, the reason is usually to be found in the specific
selection of DOFs which have been included in the correlation
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Fig.6.6 Weighted MAC function.
(a) Unweighted AutoMAC; (b) Mass-weighted AutoMAC

calculation. For a variety of reasons, important individual DOFs may be
omitted, perhaps because they were difficult to measure or, simply,
were unmeasured. If, amongst these omitted DOFs, were some with the
largest amplitudes of the true mode shape, then the remaining and
included DOFs might well represent only the lesser motions of the
mode, and may well constitute the measurement ‘noise’ on that mode
shape, yielding apparently poor correlations as a result. For this and
other related reasons, there have been proposals for ‘enhancements’ to
the standard MAC calculation by selectively eliminating those DOFs
from the set used in the calculation which contribute most to a
reduction in the MAC value. Such a procedure can be dangerous as it
can be used to serve the purpose of confirming a pre-judged result.
However, if it is used to eliminate inaccurate data from the correlation
process, then it can serve a valid and useful role. Fig. 6.7 presents an
illustration of the application of this concept to an industrial structure.

There are one or two other related issues which concern the
question of choice of DOFs. It must be remembered that the accuracy of
amplitude measurements made with attached accelerometers can be
subject to considerable errors in cases where the motion in directions
perpendicular to the axis of actual measurement is considerably greater
than that being measured. In these circumstances, errors of 100 per
cent or more in the (small) amplitudes being recorded are common, and
can easily contaminate correlation calculations as a result. Also, the
difference between the units used in translational and rotational DOFs
means that if both types of response are included in such a calculation,
then one or other of these two sets of DOFs will be weighted quite
differently to the other. Thirdly, there is the important matter of the
exactness with which the two sets of DOFs match each other. The
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Fig. 6.7 Improved MAC function.
(a) Unimproved original (140 DOFs); (b) Improved (110 DOFs —
30 DOFs deleted)

precise location and/or orientation of the measurement sites in relation
to the FE model node points can also be a critical feature. It will be seen
in the next section just how relatively slight discrepancies in the
location of a DOF can influence the numerical value of the recorded
mode shape amplitude, and of the resulting correlation coefficients.

These, and other, considerations show how sensitive the correlation
calculations can be to the choice and accuracy of the mode shape
amplitude data which are used in the process.

Frequency-scaled MAC (FMAC)
It is often found that it is necessary to examine several comparison
plots in order to construct a comprehensive picture of the full extent of
the correlation between two sets of modal properties. Certainly, it is
necessary to examine the natural frequency comparison plot as well as
the simple MAC table, and usually it is helpful if the AutoMAC plot is
taken into consideration as well. It is possible to combine all three of
these presentations into a single plot, referred to here as the FMAC and
illustrated by the example shown in Fig. 6.8 (from [54]). In this
diagram, the mode number scales of the standard MAC have been
replaced by natural frequency scales so that proximity or distance of
natural frequencies of adjacent modes is immediately apparent.
Further, the diameter of each circle indicates the extent of the
correlation for that pair of modes. The background (grey) plot is for the
AutoMAC based on the reference model and using the same degrees of
freedom as used in the ‘active’ comparison. The bolder black points
comprise the X-A comparisons, showing the frequency correlation and,
by the circle diameters, the shape correlation simultaneously while the
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Experimental Frequency

Fig. 6.8 Frequency-scaled MAC (FMAC)

lighter, grey, points relate to the AutoMAC plots for the analytical data
set. With this type of diagram it is possible to draw together all the
disparate features that are necessary to make a judgement about the
degree of correlation between the two models. It is immediately clear,
for example, whether or not the choice of measured DOFs is such that
spatial aliasing might be encountered. This provides valuable and
immediate guidance to the interpretation of significant off-diagonal
MAC values.

6.2.2.5 COMAC
The preceding paragraphs have all been concerned with the influence
on the correlation process of the various DOFs which are included in
the calculations. While these DOFs do not appear explicitly in any of
the MAC coefficients, their importance is evident by comparison of the
values produced using different selections of DOFs. Clearly, there is a
spatial dependence of the correlation parameters and our goal in the
present section is to seek a way of expressing that dependence directly,
so that a measure of the degree of correlation is presented as a function
of the individual DOFs. This goal can be realised by rearranging the
order in which the correlation calculations are performed and by
defining a quantity called the ‘Coordinate MAC’ or COMAC.

In the calculation of the MAC between two vectors, a summation is
made over all the DOFs included, resulting in a single coefficient for
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that pair of modes. The first step in the calculation of the COMAC is to
preserve the individual elements in that summation, noting that each
refers to one particular DOF, as illustrated schematically in Fig. 6.9(a).
If we then take another pair of vectors, or modes, from the same two
sets and repeat this step, we arrive at a second set of individual terms,
relating to the same set of DOFs, and so on for as many mode pairs as
we choose to include (again, see Fig. 6.9(a)). If we restrict the pairs of
modes thus included to the already-identified correlated mode pairs,
then the data we have gathered in this way contain information about
the quality of the correlation between properly-matched vectors and so
we can use them to define this correlation in more detail. In effect, the
MAC value for each of the selected mode pairs is obtained by summing
the contributions along one row in the table in Fig. 6.9(a), while a
summation down each individual column yields information about the
degree of correlation observed for that individual DOF. Suitably
normalised to present a value between 0 and 1, the COMAC parameter
for an individual DOF, i , is expressed as:

COMAC^i) = (6.6)

l=i l=i

Here, I represents an individual correlated mode pair, of which a total
of L are available, where L may well be less than the total number of
modes in both sets, for the analytical model or an mx being the
total number of experimentally-determined modes.

The COMAC can be displayed in different ways, the most obvious
being simply a diagram of its value against the DOF number, as shown
in Fig. 6.9(b). Alternatively, it is possible to use a display of the actual
structure as the basis for a diagram such as that shown in Fig. 6.9(c),
which is a much more graphic illustration of the result.

As with many of these parameters, the correct interpretation can be
difficult to make. One is tempted to conclude that regions of the
structure which show up as having (relatively) low values of COMAC
are those regions which harbour the discrepancies that are responsible
for the differences observed between the two models. This is seldom the
case, for the simple reason that regions of low COMAC correspond to
regions where the consequences of any discrepancies between the two
models are felt, rather than where they are actually located. Thus, large
reductions in COMAC are often observed at regions of large amplitude,
such as at the free ends of beams, where the effects of inaccurate
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Fig. 6.9 Coordinate MAC (CoMAC).
(a) Constructional MAC and CoMAC properties; (b) CoMAC
diagram; (c) CoMAC contour plot



437

flexibility data in other parts of the structure are most dramatically
felt. Care and ingenuity must be exercised in making such
interpretations but the fact remains that the existence of systematic
patterns of COMAC values almost always indicate systematic sources of
discrepancy between the two models and, even if these are not
immediately located, this constitutes valuable information.

6.2.3 Comparison and Correlation of Response Properties
6.2.3.1 Comparison of individual response functions
If we start with the experimental model, we find that the raw data
available in this case are those describing the time histories of the
excitation and response properties of the test structure during the
measurement. Although it is true that these time histories constitute
the most direct measurement of the structure’s actual dynamic
behaviour, it is difficult to make comparisons between these data and
the corresponding quantities computed from the analytical model. This
is so for several reasons, the most important of which is that the actual
time histories are very sensitive to certain properties in the analytical
model which are very difficult to estimate: most critically, the damping,
but also a range of other features which, in themselves, are not critical
but which combine to make useful comparisons of time histories
difficult to achieve. As a result, attempts to extract useful information
from comparisons between prediction and observation of these raw
response data are not usually made.

The next level of proximity to the actual measurements (a condition
which is important to achieve if an honest comparison of observation
and prediction is to be made) is in the form of the response functions
which are derived from spectral analysis and further processing of the
original time records. These response functions are generally presented
as FRFs (or IRFs), or sometimes as ODSs, and it is on these formats
that we shall focus our efforts for further comparison formats. In its
simplest form, this level of comparison is made with an individual
response function, and is shown by overlaying the measured curve on
its analytically-predicted counterpart, although it must be borne in
mind right at the outset that two important estimates will have to be
made in order to be able to compute the theoretical curve: the nature
and level of damping, which is not usually strictly part of the modelling
process, and the number of modes which will be included in the
summation which is made to compute the response functions. The first
of these two estimated parameters affects predicted FRFs only in the
immediate vicinity of resonances or antiresonances by limiting the
sharpness of their peaks and troughs but the second parameter can
have more significant effects on the general shape of the curves in all
regions away from the resonances if sufficient modes are not included.
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(a)

Fig. 6.10 Generation of FRFs from modal data.
(a) Effect of number of included modes; (b) Effect of increased
damping level

Strictly, a check that a sufficient number have been included should be
made before any response function comparisons are attempted.
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Fig. 6.10(a) shows the result of such a check where a given FRF is re¬
computed several times based on the same finite element model but
including progressively more of the modes from the model in the
calculation of each curve. It will be seen that once sufficient modes have
been included — and that number may be very difficult to predict
without performing this type of check — then adding yet more modes in
the series serves little added benefit. At the same stage, it is worth
noting that in many cases, the theoretical model is effectively
undamped and any damping which is added in order to make
comparisons of response possible at all will be crudely estimated.
However, in cases of very complex structures which have many modes,
some of which are ‘significant’, global, ones while others are ‘secondary’,
or local, ones, the re-computation of the FRFs using different levels of
damping may help in identifying which modes are global and which are
local, a feature which is illustrated in Fig. 6.10(b).

In Fig. 6.11(a) we show a comparison between direct measurement
and prediction (via a finite element model) of a point FRF for a simple
beam-like structure. The plot clearly shows a systematic discrepancy
between the two sets of data (resulting in a steady frequency shift
between the two curves) while at the same time indicating a high
degree of correlation in the amplitude axis. Also of interest are the
relative values of the frequencies of resonance and of antiresonance,
close examination of which can indicate whether the discrepancies are
due to localised errors (loss of stiffness at joints, etc.) or to more general
factors (such as incorrect values of elastic modulus or material density,
etc.). Nevertheless, it is a frequent requirement for some quantitative
measure of the difference between two such response functions, and
several proposals have been made for a parameter to do this: the area
between the two curves (or under the AFRF curve) is often suggested
but this is very sensitive to relatively small errors (often of secondary
importance) between the measured and predicted natural frequencies.
Indeed, this is a common difficulty in making comparisons of response
quantities and we shall see in the following paragraphs just how much
influence secondary effects can have. It should also be noted that most
of the FRF plots shown here use a logarithmic scale for the magnitude
(i.e. the modulus is plotted as dB) and this has the effect of showing
percentage discrepancies rather than absolute ones, resulting in as
much attention being drawn to what are minor discrepancies (in
absolute terms) near antiresonances as to major differences at the
resonances. There are arguments for using linear scales instead, but
these can be countered by those which led us to use logarithmic units in
the first place.

A second example is shown in Fig. 6.11(b) where a transfer mobility
for a different structure is illustrated, again for both experimental and
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Fig. 6.11 Comparison of measured and predicted FRFs.
(a) Simple structure — point FRF; (b) Complex structure —
transfer FRFs
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Fig. 6.11 Comparison of measured and predicted FRFs.
(c) Effects on FRFs of uncertainty of DOF location

predicted data. However, in this case the location of the response point
used in the modal test does not coincide exactly with any of the mesh of
grid points used in the analytical model, thereby making a direct
comparison impossible. In order to proceed, the predicted curves
relating the two grid points closest to the test position (and these were
only a few mm away, on a plate-like structure of some Im x 2m ) are
used and are displayed in Fig. 6.11(b). In this example, it is clear that
not only are there marked differences between the two models (albeit of
a different type to the previous case), but also there are striking
differences between the two predicted curves which relate to two points
very close to each other on the structure. This last observation is very
important when we consider how to assess the degree of correlation
between the experimental and predicted models. Because the particular
parameter being measured (an FRF) can be very sensitive to the exact
location of the response point (and, possibly, to the excitation point,
although that does not suffer from the same difficulty as does the
response in the example cited), major differences may be apparent at
the comparison stage which do not directly reflect on the quality of the
model, but on something much more basic — namely, the coordinate
geometry used in both instances. A third example is included in
Fig. 6.11(c), which demonstrates the uncertainty of the exact theoretical
FRF curve by plotting a group of nine point FRFs corresponding to the
target DOF and the eight immediately-adjacent DOFs.
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6.2.3.2 Correlation of complete set of FRFs
It can be noted that in a typical modal test a set of FRFs are measured
consisting of at least one column (i.e. one vector) in the FRF matrix
based on the measured DOFs, and sometimes including data from
several such columns (vectors). It is thus possible to envisage the curve-
to-curve comparison described above having to be applied to a large
number of such data in order to gain an overall impression of the
degree of correlation between measurement and prediction. This is a
daunting task, and difficult to perform effectively because there is
simply so much information for the analyst to retain and sort. However,
it is not unlike the problem faced by the need to compare several mode
shapes simultaneously except that in this case there are of the order of
400 or 800 such vectors because there is one for each excitation
frequency used in defining the FRFs. This observation leads to the idea
of applying the MAC approach to the correlation of two vectors, one
from the measured data and the other from a corresponding analytical
model prediction. Thus we can define a frequency domain assurance
criterion, or FDAC, as follows:

FDAC^^X^k

({HxM}Tk (6-7)

Clearly, a diagram of the type previously used for the MAC can be used
to display this function, although it will have a much denser form as a
result of the large number of frequencies (typically, several hundreds)
by comparison with the usual number of modes (typically, tens).
Examples are shown in Figs. 6.12(a) and (b) for the AutoFDACs of both
test and analysis results followed by the test-analysis correlation for the
same structure in Fig. 6.12(c). Likewise, it is possible to define an FRF
equivalent to the COMAC and this has been proposed as the Frequency
Response Assurance Criterion, or FRAC, with the following definition:

^2 |(*Hjk ))(ah jk (“ i ) )|
FRACU)k =~ 1̂ x Hjk )|2-^2

s=l i=l

(6-8)

where i = 1, L represents individual frequencies for which both test and
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Fig. 6.12 Frequency-domain correlation (FDAC)
(a) AutoFDAC — predicted FRFs; (b) AutoFDAC — measured
FRFs; (c) Correlation of measured and predicted FRFs

analysis data exist and the suffix k indicates that the relevant FRFs
have DOF k as their reference (feth row or column in the FRF matrix).
One of the difficulties encountered in seeking to make direct
comparisons of FRF curves is the problem which arises when there is a
shift in the location of resonance frequencies between the two sets of
data. Such not infrequently-encountered features give rise to
indications of very poor correlation and adjustments have been
proposed to compensate for this effect.

6.2.3.3 Operating deflection shapes and hybrid modal-response
correlation (MFAC)

Finally, at the end of this section, we arrive at a proposal for perhaps
the most realistic comparison between an analytical model and its
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experimental counterpart; namely, a correlation between the analytical
model modal properties and the experimental measured response
functions. Such a process avoids the complications involved in
(a) computing accurate FRF data for the theoretical model (the problem
associated with residual terms) and (b) performing a modal analysis on
the measured response data, with the inherent approximation that this
incurs.

What we have computed in the above-mentioned FDAC parameter
is a correlation of operating deflection shapes (ODSs) for the system
under study with the excitation being that which is applied to perform
the modal test and we can consider the FDAC and FRAC as just that:
the correlation between predicted and measured ODSs. If we confine
our interest to frequencies in the immediate vicinity of resonances, then
in many cases the FDAC will approximate to the MAC calculations
because at frequencies which are very close to a natural frequency,
most ODS vectors will reflect closely the shape of the mode whose
natural frequency is adjacent. If we assume that distortions will exist
(because more than just that one mode contributes to the ODS), but
that they will be similar in both measured and predicted cases, then the
FDAC correlations near natural frequencies may well serve as a very
useful approximation to the MAC correlations themselves, without the
need for a modal analysis to be performed. An example of these features
is illustrated in Fig. 6.13. In the first figure, 6.13(a), is shown a MAC-
type of correlation between the ODS vectors derived from the analytical
model at each of the (known) natural frequencies of the structure with
the corresponding analytical mode shape vectors derived from the same
model. This shows the degree of correlation which might be expected
between ODS, {7/^(cor)}, and mode shape, f°r a typically
complex practical engineering structure. Also shown, in Fig. 6.13(b), is
the result of performing an FDAC correlation between the same ODS
vectors derived from the analytical model and the corresponding ODS
characteristics for the experimental model deduced from the
measurements by a simple peak-picking process at each of the
resonance frequencies observed in the measured data set. The next
comparison, in Fig. 6.13(c), shows the traditional MAC results, using
the results of modal analysis of the measured data and, finally, in
Fig. 6.13(d), the proposed hybrid correlation between the experimental
ODS properties at the measured resonance frequencies and the
analytical model mode shapes, called the MFAC, and defined by the
following equation:
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Fig. 6.13 Mode-response correlation (MFAC).
(a) Correlation of predicted FRF vectors with predicted mode

shapes; (b) Correlation of measured and predicted FRF
vectors; (c) Correlation of measured and predicted mode
shapes; (d) Correlation of measured FRF vectors with
predicted mode shapes

MFAC{Ar,X(^qy)= ({hX (®qF{HX (®9)})({<!>AI?"ftA}r) (6.9)

Close inspection of these results reveals that Figs. 6.13(b), (c) and (d) all
tell much the same story, but the hybrid plot (d) can be produced with
much less effort than the others (see Reference [54]).
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6.2.4 Concluding Discussion
It will be appropriate to conclude this, and each of the major application
areas with a few summarising remarks, in order to help put the
preceding section into perspective. The main activity which has been
discussed in this section has been that of providing a measure of the
distance between two models — usually (but not always) an
experimentally-derived model and a theoretically-developed one. There
are two main requirements for this correlation capability. The first is
the need to be able to identify the pairing between predicted and
measured modes (to identify the Correlated Mode Pairs) so that
subsequent reconciliation procedures of error location and model
updating can proceed on the basis of the initial discrepancies between
the key parameters. The second requirement is to provide a
comprehensive but simple measure of the proximity of the two models
in order to check the progress or success of any attempts to reconcile
the initial discrepancies between them. It can be said that the tools
required for this task of comparison and correlation are now quite well
developed and that efficient and sophisticated measures of the
differences between two nominally-similar models are available. As is
often the case with such complex procedures, considerable care is
required in making the proper interpretations of the indicators that can
be computed and the reader is warned of the dangers of
oversimplification, or over-hasty conclusions being drawn from
incomplete data. As will be seen on many occasions in this work, the
problems of incompleteness in the data which can be supplied from
tests pose a greater hazard to the successful implementation of the
results of modal testing than do the inaccuracies that we expect to find
in our data.

6.3 ADJUSTMENT OR UPDATING OF MODELS
6.3.1 Rationale and Ground Rules for Model Adjustment
The subject of model updating, in which an initial theoretical model
constructed for analysing the dynamics of a structure can be refined,
corrected or updated using test data measured on the actual structure,
has become one of the most demanding and demanded applications for
modal testing. The stakes are high: if the process can be performed
successfully, then the approximations and limitations which are
inherent on current analytical (i.e. finite element) modelling can be
identified and corrected on a case-by-case basis, and the correct ways of
overcoming them in future designs learned in the process. On the other
side, the costs of both modelling and of testing are high and if the
updating processes are not successful then much time effort and
credibility may be lost. It is important, therefore, that the fundamentals
of the subject are well understood, as also are its scope and limitations
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and the demands that are placed on those who wish to pursue such an
application.

The subject has become a very extensive one, with already one text
book [55] and several hundred papers devoted to its details. It is not
realistic to attempt to condense all this material into a single section of
this text, or even into a single chapter, but what we shall seek to do is
to present the fundamentals of the subject, as these must be mastered
before any attempt is made to use the detailed methods of updating
themselves. We shall offer some definitions and propose some ground
rules which are considered necessary as the basis for the development
or implementation of model updating in practical situations. We shall
then, in the following sections, present a very concise summary of each
of the major algorithms for the updating problem together with some
discussion of how and when each of these might be considered for use in
practice.

First, it is appropriate to make some definitions for use throughout
the rest of this text, noting the precision and subtlety of distinction
between various of these terms.

Analytical model — a model comprising NxN mass and stiffness
matrices, usually based on finite element modelling methods,
occasionally including an associated damping matrix, or modal
damping factors. While the model is defined in terms of these
spatial parameters, it is understood that any of the corresponding
modal or response parameters can be obtained by suitable analysis
of the given matrices.

Experimental model — a model consisting originally of a set of FRF
data (or equivalent) from which a limited modal model can be
obtained by modal analysis of the measured response functions. It is
generally assumed that the experimental model comprises an m x m
eigenvalue matrix and an n x m eigenvector matrix, both of which
are usually complex.

Valid model — a model which predicts the required dynamic
behaviour of the subject structure with an acceptable degree of
accuracy, or ‘correctness’. This criterion is itself subject to
qualification, not only in terms of the precision of the various
parameters — natural frequencies, response amplitudes etc. — but
also in their extent. A series of different levels of ‘correctness’ have
been proposed in this respect, as follows:

• Level 1: prediction (by the model and accurate to a within
specified tolerance) of the various modal properties extracted
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from modal test (i.e. measured natural frequencies, and mode
shapes defined at measured DOFs) in the frequency range
covered by the test;

• Level 2: accurate prediction of measured response functions in
the frequency range covered by the test;

• Level 3: accurate prediction of measured modal properties,
including at unmeasured DOFs, in the frequency range covered
by the test;

• Level 4: accurate prediction of response properties over the
measured frequency range but including unmeasured DOFs;

• Level 5: accurate prediction of response properties over the full
frequency range and at all DOFs (this implies an ‘exactly-correct’
model).

Data — quantitative items which describe specific features of a model
or a structure or its response or other dynamic behaviour.

Information — in effect, independent items of data that can be used
together to solve problems of model adjustment, correction and
updating. The amount of information available must generally be
equal to or greater than the number of unknowns or variables for a
unique solution to be available.

Comparison — the process of setting two sets of data side-by-side so
that a direct comparison can be made of corresponding properties.
This means presenting the two sets in the same format so that the
comparison can be made objectively, although it is used in a passive,
and qualitative, rather than quantitative way.

Correlation — is the process of quantifying the degree of similarity
and dissimilarity between two models and is the numerical
conclusion of the comparison process. Different indices and
weighting factors can be involved to provide the most useful
measures of correlation for the subsequent use of the model.

Localisation (or location) — the process of locating the whereabouts of
differences between two models. Equivalent to the specification of
the parameters to be updated: a necessary step before updating can
take place.

Optimisation — the process of determining a set of values for given
parameters such that a pre-defined objective (penalty) function is
minimised. In the context of model updating, it is to determine the
values for a predefined set of model parameters such that the
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discrepancy between measured and predicted dynamic behaviour is
minimised. Only in cases where all the erroneous parameters have
been located and included in the optimisation process can an ‘exact’
updating be performed. In all other cases, the solution is a
compromise of unknown quality.

Reconciliation — the process of explaining the origins of differences
between two models which result in there being discrepancies
observed in their respective dynamic behaviour (usually measured
by comparison with predicted, but may be applied to two different
analytical models).

Updating — the process of correcting the numerical values of
individual parameters in a mathematical model using data obtained
from an associated experimental model such that the updated model
more correctly describes the dynamic properties of the subject
structure (see above for a discussion of ‘correctness’).

Verification (of a model) — the process of determining whether a
given model is capable of describing the behaviour of the subject
structure, if all the individual model parameters are assigned the
correct values. A model may not be verified if it lacks certain
features or freedoms which are present in the actual structure
since, in this case, no amount of parameter correction can
compensate for the errors embedded in the basic model.

Validation (of a model) — the process of demonstrating or attaining
the condition that the coefficients in a model are sufficiently
accurate to enable that model to provide an acceptably correct
description of the subject structure’s dynamic behaviour. It is clear
that a model which is not verified cannot be validated, and, indeed,
that such a validation procedure should not be attempted on an
unverified model.

A set of ground rules can be constructed from the above definitions.
It is first necessary to decide upon the level of accuracy, or correctness,
which is sought from the adjustment of the initial model, and this will
be heavily influenced by the eventual application of the refined model.
Then, it is necessary to determine whether or not the initial model can
be updated, a difficult task which, in effect, calls for it to be verified.
This means ensuring that all the important features of the actual
structure are included in the model, even if only approximately at the
outset, and that there are no actual features which have been omitted
from the model. Of particular concern at this stage is the inclusion of
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sufficient flexibility at the joints of an assembled structure and, most
importantly, of sufficient fineness of mesh such that the model has
converged. Model updating cannot be used to improve a model which is
too coarse; only to refine one which is basically correct, but inaccurate
in some of its components.

Next, it is necessary to determine the order of the problem: and by
that is meant to establish how many of the model’s coefficients need to
be corrected. This is, in effect, the same task as locating the regions
which contain all the errors to be corrected, but it is necessary to
identify all of these so that the full scale of the problem — the number
of unknowns to be identified in the updating process — is established.
Sometimes referred to as ‘locating the errors’ or as ‘specifying the
updating parameters’, this step is one of the most difficult yet most
critical in the whole updating process.

The last stage before actual computation of the updating corrections
themselves involves the specification of the data which need to be
obtained in the validation tests so that the updating procedure can
succeed. This is not simply a question of quantity of measured data (as
is often thought to be the case) but, more importantly, of its selection so
that the maximum amount of information about the experimental
model is made available from the measured data.

Once all these preparatory stages have been undertaken, it is
possible to embark on the updating calculation itself, with the equation
to be solved defined in as satisfactory state a possible. There are several
numerical difficulties encountered in the process of performing an
updating computation and most of these derive from ill-conditioned
matrices which are themselves the result of poorly-defined equations
together with a general insufficiency of useful information.

6.3.2 Basic Concepts of Model Updating
It will be helpful to review the basic concept and objectives of the model
updating process prior to a description of the major algorithms that
have been developed for its implementation. These concepts can be
presented concisely as follows:

• The starting point is the existence of an initial analytical model that
is to be updated, so that we have available mass and stiffness
matrices, and [-KaItVxTV and, by direct analysis of these,
the corresponding modal matrices, [oiyil^xAf and [‘J’aItVxN and the
FRF matrix, [H A (co)]^^ ;

• Also, we have access to a limited number of response and modal
properties for the experimental model in the form of [H^(o)]rexp ,
[coxlmxm and [d’xlnxm- However, it must be noted at this stage
that the sizes of these experimental model matrices are smaller,
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even much smaller, than those of the analytical model;
The task of the model updating process is to determine the changes
which must be made to the initial analytical model ([AM] and
[AK] ) so that the modal and response properties of the thus-
corrected analytical model match those of the experimental data.

The practical implication of this situation is that the problem we face is
seriously under-determined because in general there will be many more
elements in the initial model that may need to be updated (or corrected)
than there are data items for the experimental measurements. Thus
there will be more unknowns than there are equations and so the
problem is not soluble in a mathematical sense. However, if it can be
established that, in fact, the number of parameters in the initial model
that actually do need to be corrected is considerably smaller than the
total number of parameters (or that most of the initial model is already
acceptable), and if we can identify which are the parameters that need
to be corrected, then it is possible that the problem may be converted to
an over-determined one that is therefore amenable to solution. There
are several ‘ifs’ in this statement but they represent the conditions that
must be met if model updating is likely to be applicable in a practical
situation. In fact, the first ‘if is a way of saying that the initial model
must be close enough to the correct one so that just a manageable
number of parameters need to be changed. More precisely, this means
that the errors in the initial model need to be relatively few in number,
perhaps localised in certain regions of the structure, and not distributed
throughout all the elements. It is less critical that the errors be small
than that they be few in number.

The second ‘if is perhaps the most difficult aspect of model updating:
it is the requirement that we can successfully identify the locations of
the parameters that need to be corrected. This is often the most
demanding step in the application of model updating procedures in
practice and will be further discussed later in this section. However, if
that question is set on one side for the moment, we can now examine
the various algorithms that are available for carrying out the updating
computations which will lead to a revised analytical model that
approaches the objective stated above by exhibiting the same dynamic
properties as measured on the experimental test structure.

6.3.3 General Methods of Model Updating
Before offering a synopsis of the different methods of updating
themselves, it is appropriate to describe the general classes of method
which are available. It is convenient to group them first into two major
types:
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direct matrix methods: those methods in which the individual
elements in the system matrices are adjusted directly from
comparison between test data and initial analytical model
predictions; and

• indirect, physical property adjustment methods: in which changes
are made to specific physical or elemental properties in the model in
a search for an adjustment which brings measured and predicted
properties closer together.

The first of these two groups are generally non-iterative methods which
share the feature that the changes they introduce may not be
physically-realisable changes: they are simply new values for individual
elements in the system [M] and [A] matrices, some of which may be
applied to elements which are initially (and which, for reasons of the
model configuration or connectivity should remain) zero. They generally
require complete mode shape vectors as input but are, nevertheless,
computationally very efficient. They have as their target the ability to
reproduce the measured modal properties of tn natural frequencies and
mode shapes.

The second group of methods are in many ways more acceptable in
that the parameters which they adjust are, or are much closer to,
physically-realisable quantities. In the simpler versions, a single
correction factor might be applied to the entire elemental stiffness
submatrix for a particular (finite) element, but this is much more
supportable than a correction factor which introduces a finite value into
an off-diagonal stiffness matrix element which links two physically-
disconnected DOFs. Methods in this second group are generally
iterative and, as such, more expensive of computer effort. To offset this
disadvantage, they will generally work with incomplete mode shape
vectors (mode shapes defined at the n DOFs of a typical modal test in
place of the complete N DOFs of the full analytical model which are
required by most of the first group of methods).

Developments are continuing in methods of both groups, although it
is the second group that have emerged as the most widely-used in
general practical application. As a preface to the following sections,
which summarise each of the main approaches, it should be stressed
that the subject is still relatively immature and that success in its
application is not assured. One important feature of this state of
development is that while successes are often reported, these are quite
case-dependent. This is taken as a sign that the essential technology is
there for the developing, but that the necessary developments are not
yet complete. Potential users of the methods should therefore be
forewarned but encouraged!
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In the following sections we shall summarise the essential features
of the following methods, while referring the interested reader to the
more detailed literature for a full explanation and exposition of each.
Two surveys that provide a useful entree to this subject are reported in
References [56] and [57]). The methods summarised include, from the
first group:

• Direct Matrix Updating (DMU) Method
• Error Matrix Method (EMM)

and from the second group:

• Eigendynamic Constraint Methods (ECM)
• Inverse Eigensensitivity (IES) Methods
• Response Function Methods (RFM)

6.3.4 Direct Matrix Updating
The Direct Matrix Updating method was one of the earliest to be
developed for industrial application, dating back to the 1970s. In its
basic form, applied to an undamped system, the method performs an
adjustment first on the system mass matrix, and then uses the result to
perform a similar adjustment on the stiffness matrix. As previously
mentioned, the method requires the model and the input mode shape
data for the full set of DOFs. This normally presents a problem for the
experimental model description and so one of the expansion methods
presented in Chapter 5 would normally need to be applied to the
incomplete measured mode shape vectors to prepare them for
application in this method.

The formula for the updating is simply defined, as follows:

J’1[®xF[mJ

where

[mJmxm = [Ma^xN f^xlvxm
followed by:
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[A^c] = F \Ma\

(6.10)

Additional constraints can be added to restrict the adjustments to the
mass and stiffness matrices which these formula introduce so that they
are more consistent with the physics of the system. It can easily be seen
that the solution obtained is not a unique one, by any means. This can
be shown mathematically (by the fact that there are a large number of
[AAf] matrices which will satisfy the basic requirement of equation
(6.10)) as well as heuristically by the fact that the model is of order
NxN and no requirement has been stipulated for the properties of the
modes after mode number m. This means that there exist a large
number of models which satisfy the specified constraints but which all
have different properties for the unspecified modes. It is clear that a
solution obtained in this way is a numerical solution and not a physical
one. Further details of this method can be found in Reference [58]

6.3.5 Error Matrix Method (EMM)
In this method, an alternative approach is suggested for the task of
determining the adjustments to the elements in the mass and stiffness
matrices. The method uses the concept of ‘error matrices’, which have
already been introduced in the previous section, which are the matrix
differences between the experimental (X) and analytical (A) system
matrices, as follows:

[4M]=[MX]-[MX] ; (6.11)

We are, in effect, interested in determining these two error matrices. It
can be seen that direct computation of the mass or stiffness error
matrix from equation (6.11) is hindered by our inability to specify
[Mx] or [A^] . Although there exist direct transformations between
the modal properties and the spatial properties, in the form of:

(6.12)

these are only valid in cases where the modal matrices are complete —
i.e. contain all modes and all N DOFs — and so are not applicable in the
general practical case where only in modes are identified and these
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defined at only n DOFs. The EMM seeks to obtain an estimate for the
error matrices using the following approach which is based on the
contribution of the known modes to the system flexibility and inverse
mass properties. This we may write as:

(6.13)

and similarly for the mass properties, leading to the EMM formulae:

W*[Ka -[KXf1\ka ]

(6.14)

[am]«[ma ]([<da ][oaF F\ma ]

in the application of which the data for as many or as few modes can be
included, although special precautions must be taken if these data are
incomplete in the sense of DOFs included.

An example of the application of this method to a practical
aerospace structure is shown in Fig. 6.14, and further details can be
found in Reference [59].

Fig. 6.14 Example of application of EMM updating
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6.3.6 Eigendynamic Constraint Methods (ECM)
One of the earliest of the so-called indirect updating methods is the
Eigendynamic Constraint Method (ECM) which has a number of
different versions, depending upon which of the various eigendynamic
equations are employed. These relationships are:

(6.15a)

=1 (6.15b)

=(®x)r (6.15c)

The ECM is typical of all the indirect methods in that the unknowns of
the problem are no longer the individual elements in [AM] and [AJl]
(as is the case for the DMU and EMM methods just described), but,
instead, are a set of individual element correction factors, as and bs for
element (or element group) s. This transformation can be summarised
by the expressions:

L L
[aM]=]T aj/nj ; M= ^bs[^s]

S=1 S=1

(6.16)

where matrices [ms], [fes] are the mass and stiffness matrices for the
sth element (or element group, if several elements are grouped together
for the purposes of updating, as may be done if these elements are
assumed to carry the same error, or correction factor); L is the total
number of elements or element groups to be updated; and as and bs
are the correction factors which are applied to every element in the
respective elemental mass and stiffness matrices (and are sometimes
referred to as the ‘p’ factors).

The ECM updating algorithm is based on application of the
eigendynamic conditions above and the determination of a set of
correction or ‘p’ factors which allow the modified model to satisfy these
conditions. The most general version of this family of methods is the
ECM itself, which can be described as follows:

(Ax )r [AM]{([)x}r -[AK]{<!> x = (“XYr A X B^X }r

and (6.17)
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{^x}^ kalfax }r = fax [MA ]fax }r -1

These equations can be rearranged into a standard set of linear
equations which will lead to a solution for the unknown correction
factors:

[A](2V+1)x2L W2Lxl = fai}(2V+l)xl (6.18)

where N = the number of DOFs in the analytical model; 2L = the
number of independent design variables (or element (group)s to be
corrected); [A] and {8} are a coefficient matrix and vector, respectively,
which are formed using the (known) elements in the initial analytical
model ([Mx] and [.K^]) and the experimental properties of the rth
mode ((<ox)r J {'bxlr ); an^ {p} is a vector which contains the unknown
(and sought) correction factors.

If data are available for a number (m) of modes, then m equations of
the form of (6.18) can be written and combined to form:

2Lxl

.fa"i}jm(iV+l)xl
or

(6.19)

When equation (6.19) is over-determined (i.e. when m(N +1) > 2L ),
then a least-squares solution for {p} can be found using a generalised
inverse of [A] , preferably computing this by means of the SVD or an
equivalent approach that enables the condition of the solution to be
assessed:

W<{S} (6.20)

Two other versions of the ECM have been used in the past — one
known as the Force Balance Method which makes use only of equation
6.15(a) resulting in a slightly incomplete set of equations:

lALxx2L W2LXI - fa'J/nNxl (6.21a)
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and the so-called Orthogonality Constraint Method which uses
equations 6.15(b) and (c), but not (a), resulting in an even smaller
subset of the full eigendynamic equations:

ln(zn+l)x2L {p)2Lx1 ~ }m(zn+l)xl (6.21b)

Both these derivatives make use of less than the full set of data and
equations and so are less effective than the primary version, the ECM.

However, it should be noted that there is a major drawback to the
use of this group of methods in that while not all modes must be
included (m can be less than N), the methods do require that all DOFs
are included in the mode shapes of those modes that are used in the
analysis. In practice, this means that a mode expansion procedure (see
Chapter 5) must be applied to the measured data, and this is a task
that is not only troublesome but also of dubious validity for this
application since the expansion is likely to be based on the very
analytical model which is the subject of the updating, or correction
process. Perhaps for this reason, these methods are less frequently used
than the others in this class, such as the Inverse Eigensensitivity
Method, which is described next.

6.3.7 Inverse Eigensensitivity (IES) Methods
The second of the indirect methods to be summarised is the one which
has found the greatest application in practice, with a number of
commercially-available codes already available, and is referred to as the
‘Inverse Eigensensitivity (IES) Method’. The method is based on an
equation of exactly the same general form as the ECM methods
(equations 6.19 and 6.21) with the difference that the system matrix
and vector, [A] and {5}, are composed of properties which derive from
the analytical model modal sensitivities and the discrepancies between
predicted and measured modal properties, respectively. The essential
theory upon which the method is based is summarised below.

The basis of the method is the assumption that the differences
between measured and predicted modal properties (of natural
frequencies, Acor , and mode shapes, {A<|>}r ), can be described in terms
of the relevant modal sensitivities (rates of change of natural
frequencies (&kAr/Sms , ...) and mode shapes (S^^r/Sm,; , ...) with
respect to changes in individual mass and stiffness terms, (ms, ks , ...))
and small adjustments to selected mass and stiffness elements in the
model (as , bs). This can be expressed as follows:
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s=l

V g^A^
S=1

where

dks

dks
L

_
2

V ^Ar 2Lbs=f
8=1

3®4r~^PsdPs

S=1 s

L a 2
* 2 X-1 c'®4rAac « z ——a„, dms s

s=l 6

y ^aL
S dp° S

L
[AM]=£as[ms]

S=1
w=^bs[fes]

S=1

(6.22)

(6.23)

using the same notation as for the ECM method described in the
previous section. These expressions implicitly assume a small
discrepancy between the two models — experimental and analytical —
and this is indicated by the approximation rather than equality in
equation (6.22). If data are available relating to measured and predicted
values of several (m) modes of the structure, then m sets of equations of
the type shown in equation (6.22) can be derived and assembled
together into the single equation below which forms the basis of this
method:

g^Al
Xi cm,

dm-i

^Am
Xn, dm^

dm^

dmL

d^Al
Xi dki
5Wa)i

dki

2 2^Am ^Am
\ dmL
dWAL g^L

dm^ dki

g^Al
Xi dkr
gM

8kL

g^L
dkL
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Acof /
{Mil

2/2Acom/(om

{mL

or

IXln(n+l)x2.L{^}2Lxl ~ {$}m(n+l)xl (6.24)

which is an expression of exactly the same form as that derived earlier
for the ECM approach with the only difference being in the contents of
the system matrix and vector. Here these are comprised of sensitivity
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properties of the initial analytical model (which are available from the
eigensolution of that model) together with the observed discrepancies
between prediction and measurement of the various modal properties,
and these are available once a modal test has been conducted on the
test structure. It must be noted here, however, that the computational
cost of deriving the eignevector sensitivity terms is much higher than
for the eigenvalue sensitivities. As a result, some early implementations
of the method eschewed the mode shape data and applied the method
based only on the eignevalue sensitivities. As will be seen below, this
approach severely limits the applicability of the method because of the
very small number of experimental data that can be input to the
method if only natural frequencies are used.

A solution to the problem presented by this expression can be
obtained provided that the equation in (6.24) is over-determined: i.e. if
there are more difference data available than there are unknown
correction parameters to be found. These two critical parameters are
determined by (i) the number (m) of correlated mode pairs that are
available (it is important to note that only those modes for which
measured and predicted properties have been established can be
included) (ii) the number (n) of measured response points for each mode
shape and (iii) the number (2L) of model parameters than are
considered to need correction, or updating. It is clear that unless this
over-determination is obtained, then a meaningful solution cannot be
found, even if a numerical solution can be computed. Even when the
essential condition for over-determination (that m(n +1) > 2L ) is
attained, there is still no guarantee that a viable solution can be found
because the matrix [A] will still be singular unless all the data
supplied from the modal test are independent (it should be recalled that
the choice of the measured response DOFs is just as important as their
number in order to achieve the required independence). It is normal to
seek a situation where there are two or three times as many equations
as unknowns before undertaking a solution to equation (6.24), which
can be done by computing a generalised inverse for [A] , preferably
using the SVD or equivalent approach that can ensure the condition of
the matrix. Then we can write:

{p}=[A]+{5} (6.25)

in which the solution obtained for the required correction factors {p} is
a minimum least-squares solution.

It will be seen that this method, unlike its predecessor, the ECM,
does not require complete eigenvector data and can function even when
only a limited number of DOFs are available. This gives this approach a
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(a)

(c)

(e)

Fig. 6.15 Examples of application of IES updating.
(a) Current MAC chart; (b) Evolution of correction factors;
(c) Evolution of MAC values of correlated mode pairs;
(d) Evolution of natural frequency errors for correlated mode
pairs; (e) FRF characteristics of updated rotor system:

Measured; Initial model; Updated model



462

significant advantage over the ECM since the need to expand
incomplete measured mode shapes is removed, and there is no
unrealistic expectation placed on the selection of points of
measurement. However, because of the inherent approximation
involved at the outset of this formulation, and of the inevitable
incompleteness of the modal data, the numerical solution (6.25) is not
an exact one to the physical problem being addressed and should be
repeated iteratively to seek a stable solution of practical value. An
illustration of such a solution procedure is given in Fig. 6.15 which
shows the evolution of an updating calculation using this approach. The
figure displays the values of (a) updating correction parameters, (b)
natural frequency differences and (c) MAC values as the solution
progresses through some 10 iterations.

It will be appreciated that there are many choices that can be made
by the analyst in applying this method: (i) how many modes to include,
(ii) how many measurement points to include (ii) whether to include
mode shape data as well as natural frequency data (recall that the
eigenvector sensitivities are computationally more expensive than those
for the eigenvalues). Should a convergent solution not be found, or if the
results of a converged solution are deemed to be physically unrealistic
or unacceptable (in that they demand such major changes to the
original model parameters that these are not acceptable to the
modeller), then it is likely that the problem has been ill-posed, probably
by specifying an incorrect selection of the parameters which need to be
corrected. In such cases, it will be necessary to restart the updating
process employing a different set of parameters, or additional data.

Further discussion of these aspects of how to use the updating
algorithms are presented in a later section of this chapter.

6.3.8 Response Function Methods (RFM)
One of the difficulties in application of any of the aforementioned
updating methods is how to obtain enough measured data to ensure
that the updating equation can be made over-determined. In most
applications, there are a great many more model parameters that might
need to be updated than the number of modal properties that can be
measured in a conventional modal test. The incompleteness of any
measured modal data is twofold — (i) it is difficult (although not
impossible) to measure the mode shapes at anything like the full
number of DOFs which are present in the corresponding analytical
model, and (ii) it is almost impossible to measure the properties of more
than a small number of low-frequency modes for the simple reason that
in most structures, a combination of modal density and damping level
means that the successful extraction of reliable modal properties
becomes infeasible above 30 to 50 modes. For structures which possess
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tens of thousands of DOFs, this restriction to working with only tens of
modes presents a severe constraint to the whole updating process.

One solution to this problem of incompleteness was proposed in the
mid 1980s, [60], by seeking to use directly the response function data
which are obtained for a modal test. The philosophy behind this
approach is to exploit the facts that (i) there are many more ‘items’ of
response data than of modal data (since it is the objective of modal
analysis to reduce the amount of data required to describe a structure’s
dynamic behaviour) so that the under-determination problem might be
positively addressed by this route, (ii) the response data are more
faithful to the actual behaviour of the test structure than are the modal
properties which are extracted from them, necessarily being affected by
the approximations and assumptions embedded in the parameter
extraction procedures that are used and (iii) the difficult question of
inclusion or exclusion of damping from the analysis might be better
treated if the sweeping assumptions of damping type and distribution
can be delayed until later in the analysis than is possible in any modal
approach. Based on these ideas, another updating algorithm has been
devised and offers an additional, if not alternative, tool and perspective
tor the analyst.

The method presents another version of the same type of equation
as we have seen in the two preceding methods (as shown in equations
6.20 and 6.25), but in this case the system matrix [A] and vector {8}
are populated by response properties rather than modal properties. The
essential features of the analysis (which are detailed in References [60]
and [61]) are as follows:

[Ha (a.J]= [HX fa )]= [HaMM®,)][HXfa )] (6.26)

or, using only the 7th column of each FRF matrix:

{HAfa)}j -{HXfa)}j =[#aM[aZ(c^

where

[aZ(©J]= [AK]-^2 [AAf]+ico; [c] ... etc (6.27)

These expressions can be combined and transformed into a more
convenient format:

Hlxi = (6.28)
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where the system matrix, [7?(<ol)]> is constructed from the FRF
properties of the analytical model, and the system vector,
represents the differences between all the measured and corresponding
predicted FRFs at the chosen response DOFs for frequency of vibration,
mi . If we have response function data for several different frequencies,

, i = 1, S, then we can construct a single equation of the same form as
(6.28) which can have many more components than is generally possible
with modal data since, in practice, S is likely to be much greater than
tn, the number of modes that can be defined and included. Thus we can
write:

M®1).
[r(©2)

(6.29)i2Lxl ~ '

AH7(©s)Snx2L Snxl

This is clearly another version of the same type of equation we have
derived in the previous indirect updating methods and so can be
written summarily, with the usual form of solution, as follows:

MW={8}

so that

h=[« (6.30)

Much the same comments apply to this approach, in terms of the need
to over-determine the set of equations before seeking a solution using
(6.30), but the difference in this case is the relatively rich data source in
the FRF data, usually one or two orders of magnitude greater than that
available in modal properties. Nevertheless, care must be taken to
ensure the condition of the [R] matrix which is constructed because
sheer quantity of measured data points does not ensure a matrix which
is non-singular and the selection of an optimum set of measured
frequencies as well as of measured response locations remains an
important task for the analyst, although this approach offers a wider
range of possibilities than do the methods based purely n modal
properties.

A practical example of the application of this method is illustrated
in Fig. 6.16 which is taken from Rference [61] where further details of
the method can be found.
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mass elements stiffness elements

(a) Test structure; (b) Correction factors; (c) FRF comparisons
before and after updating
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In practice, a combination of this method and the inverse
eigensensitivity method is thought likely to emerge as offering the best
of both approaches although, as previously mentioned, this technology
remains at a relatively early stage of development and there are several
improvements to be wrung out of the foregoing analytical
considerations.

For further details of these methods, the interested reader is
directed to one of the many specialised treatises on the subject, as
indicated at the start of this section.

6.3.9 Application of Model Updating to Practical Problems
It is often found that application of these model updating procedures to
practical problems meets with mixed results and frequently the whole
process is very difficult to conduct. It is true that most methods or
algorithms are validated by benchmark case studies, but these are
usually based on simulations of experimental data, rather than real test
data. This type of validation using simulated data is routinely made for
the good reason that the correct answer is ‘known’ and so the degree of
success of each application can be accurately assessed. However, such
procedures have the drawback that they risk excluding certain features
of real life; features that can have a major influence on the very
procedures that are being assessed. This is certainly the case in respect
of model updating and considerable care must be exercised in using
these methods on real-world practical problems.

It can be seen that there exist more than one type of model error,
and only one of these is amenable to correction by model updating
procedures. The errors which can exist in an analytical model
constructed to describe the dynamics of a structure:

• first, there are parameter errors, by which we refer to the
numerical values of the individual parameters of mass and stiffness
which comprise the model;

• second there are discretisation errors, which can result from the
use of an over-coarse representation of the actual continuous
structure by a finite number of discrete components; and

• third, there are structural errors, which result when features in
the actual structure are omitted from the idealisation that is
created for the mathematical model. These errors include, clearly,
the omission of certain structural features but more subtly, they
include the omission of flexibilities that can exist at joints or
interfaces between components. In all such cases, the essential
problem is that the parameters which need to be adjusted to make
the analytical model match the experimental observations simply do
not exist in the initial model which is thus not capable of being
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updated.

It has been found that only errors of the first type — parameter
errors — can be corrected by model updating procedures. The other
types of error — discretisation and structure errors — cannot be
corrected by these methods and so it is important that models to be
subjected to updating have been verified as being capable of such
correction before embarking on an updating exercise. However, this
verification is not so easily achieved, especially in respect of structural
errors, and so we must learn how to recognise when an updating
process is failing to attain a satisfactory solution

It is appropriate to consider here the consequences of applying
model updating to situations which do not satisfy these requirements,
and we can do so by using a numerical simulation which is seeded with
errors of all three types (rather than just the first type, which is
common practice in the development of the updating algorithms
themselves). A model of a simple plate shown in Fig. 6.17(a) — the
analytical model — is used for this purpose (Reference [62]). A second
version of the original model is taken and given different properties for
several of the elements — the so-called ‘experimental’ model, (b). A
small number of modal data for the second model are computed,
contaminated with representative random noise, and a model updating
performed. It is found that a satisfactory result is obtained in this case
with the actual discrepancies effectively identified by the updating
process. An alternative pseudo-experimental or ‘reference’ model is then
constructed (c), which comprises a model with a much finer mesh, but
one which possesses exactly the same material and dimensional
properties as the original analytical model (i.e. there are no parameter
errors). However, it is found that the fine-mesh model and the coarse-
mesh model possess different modal properties. In the second example,
modal data from the fine-mesh model is used to update the initial
analytical model and it is found that parameter changes (‘corrections’)
can be defined, which bring these two models into closer agreement.
These corrections are, of course, compensation for the discretisation
errors that result from the coarseness of the original analytical model
and do not truly represent errors in the physical parameters that had
been used. It will be seen that the ‘errors’ found in this case are of the
same order of magnitude as those which were found in the first
example, where the parameters used really were in error. In the third
case study, the fine mesh model is then corrupted by parameter
changes which reflect those used in the first experimental model and
the updating is carried out again. Once more, a set of modified
parameters are obtained which satisfy the criterion of minimum
difference between the modal properties of the target modes. In this
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Case Study 3 Case Study 1

Model B:
Coarse mesh
Exact parameter

Model A:
Fine mesh

Exact parameter

Model C:
Coarse mesh
Approximate parameter

Fig. 6.17 Test case to explore different types of model error.
(a) Model A — Reference model; (b) Model B — Experimental
model; (c) Model C — Analytical model

case, the modifications required combine the adjustments necessary to
correct the true parameter errors and those which are introduced to
compensate for the coarse discretisation of the initial analytical model.
Close inspection of these adjustments in the final case show them to be
sensibly the sum of the corrections found in cases 1 and 2, respectively.

6.3.10 Concluding Discussion
To some extent, many of the summarising comments on this topic have
already been made in the introduction to this section. It will be seen
that there exist a considerable variety of methods and algorithms for
the task of updating a theoretical model to match measured data and,
at first, this may seem to be surprising. Why is there not just a single
approach to the task? It is suspected that the answer lies in the
enormity (some say impossibility!) of the task which seeks to adjust the
values of thousands of coefficients or elements in a theoretical model
using just hundreds of measured data. The problem is further
complicated by the fact that the model being updated may not possess
the correct configuration (so that the coefficients are not strictly valid
ones, anyway) and by the possibility that the experimental data are not
all independent of each other so that there is even less information
available from the tests than initially believed. Against this background
we can present a realistic perspective of the task for the updating
analyst.
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Having said that, it is appropriate to view the various methods and
algorithms as a set of tools that the analyst (and it remains the role and
task of the modeller to do this) can use to seek a better model than the
one that was created initially. He or she should learn to use these
various numerical indicators provided by the updating routines to guide
the improvement of the model, first to one that can be verified as
possessing the correct configuration (or order, or connectivity), and then
to one which has acceptable numerical values so that it can be declared
valid for its intended purpose. It is considered important that the
second phase should not be undertaken until and unless the first stage,
verification, has been accomplished, since much time and effort can be
wasted seeking compensation for an inadequate model by updating its
parameters. In the majority of cases, a model which cannot be verified
cannot be updated. Hence, great care should be taken in interpreting
the results of an updating process to check that progress is really being
made towards finding the correct values for the model coefficients and
that the algorithm is not seeking to compensate for an inadequate form
of model.

Concerning the multiplicity of methods and algorithms, as one of
the major difficulties is the under-determination of the problem, there
is probably some benefit in trying more than one method, or certainly in
making more than one try with a given method, in the hope of eliciting
more information from the given data. As with other applications, the
absence of valuable information regarding the out-of-range high-
frequency modes is a drawback, especially with the modal-based
methods which expressly exclude any information which is available in
the original measured data. Refined methods which can access this
information, such as those which make direct use of response data, or
which include antiresonances as well as resonant frequencies, may well
have an important role to play in the future evolution of the updating
technology as it is known that such data are rich in this additional
information.

6.4 COUPLED AND MODIFIED STRUCTURE ANALYSIS
6.4.1 Basic Rationale and Concepts of Coupled/Modified

Structure Analysis
Preceding sections in this chapter were concerned with the task of
validating, or obtaining and refining, a mathematical model of a given
structure. Once this task is complete, we are in a position to use that
model for some further purpose (this is, after all, why it was desired to
produce the model in the first place) and the following sections will
address a number of applications to which such models may usefully be
put. One of the most powerful applications for the models which can be
developed by modal testing is to the general group of analysis methods
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known as ‘structural modification’, ‘coupled structures’, ‘substructuring’
or ‘structural assembly’ applications. Although these may appear to be
quite disparate applications, they do in fact all share exactly the same
analysis procedures and requirements in terms of the models supplied
from the modal test. As a result, it is convenient to present them as a
group, rather than as different methods, as is often done.

6.4.1.1 Rationale for structural modification
The first application we shall consider follows on directly from the
process of obtaining and verifying the basic structure’s model in that it
seeks to predict the effect of making modifications to the structure.
These modifications may be imposed by external factors — e.g. design
alterations for operational reasons — and in this case it will generally
be necessary to determine what changes in dynamic properties will
ensue from introducing the modifications as these might be
detrimental, for example by moving closer to a resonance condition than
applied before the changes. Another possibility is that it may be
required to change the dynamic properties themselves, perhaps to avoid
a resonance or to add more damping, and then it is important to know
how best to go about modifying the structure so as to bring about the
desired changes in dynamic behaviour without at the same time
introducing some new unwanted effects. (All too often in the past has a
modification been made to move a natural frequency ‘by trial and error’
only to find a different mode moving into prominence at a different
frequency.)

In both these cases, a technique which permits the prediction of all
the changes in dynamic properties resulting from a given structural
modification will be of considerable value. As with many of these
application areas, basic concepts such as the one outlined below have
been extensively developed and refined and the reader is referred to the
specialist literature for discussion of these more advanced aspects.
However, we present here the basis of the techniques generally referred
to as ‘structural dynamic modification’ methods. We have chosen to
present the principles using an undamped system as it is usually the
location of the resonance frequencies which is of greatest importance
and the inclusion of damping makes little difference in this respect.
However, the same approach can be made using the general damped
case by appropriate extension of the theory.

6.4.1.2 Rationale for structural coupling
There are many instances in which it is convenient to be able to
consider a complex engineering structure as an assembly of simpler
components, or substructures. For example, the theoretical analysis of a
large structure can often be made much more efficiently if this is
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broken down into its component parts, each of these then analysed
separately and the whole assembly reconstituted in terms of the models
of each individual component. The increase in efficiency thus gained
derives from the facility of describing a (sub)structure’s essential
dynamic characteristics very compactly in terms of its modal properties.
Another way of viewing the process, in matrix terms, is to note that the
spatial model of a typical large-scale structure would tend to have
extensive regions of its mass and stiffness matrices populated by zeroes.
In effect, a substructure type of analysis concentrates on submatrices
centred on the leading diagonals of the complete system matrices, not
involving the remote, null, regions.

One particularly powerful application of the substructure approach
is to a range of problems where it is required to combine subsystem or
component models derived from different sources — perhaps from quite
disparate analyses but often from a mixture of analytical and
experimental studies. Thus we may seek to combine component models
from theoretical analysis with others from modal tests.

6.4.1.3 Concepts and notation of coupled/modified structure
analysis

The general principles of this class of application can be demonstrated
by the simple system shown in Fig. 6.18(a), which consists of two
separate and distinct subsystems, or structural elements, A and B,
which are to be combined to form the coupled or connected system, C.
In this very simple example, we see one system with N A DOFs being
coupled to a second system with Ng DOFs, with the resulting coupled
system having Nq DOFs, where Nc ^N A + Ng. In this particular
example, we see that the correct expression for the number of DOFs in
the coupled system is Nq = N A + Ng - 2 , and this is the case because
the two components are connected or coupled at two of the DOFs in
each subsystem with the result that the total number of DOFs after the
coupling is two less than the sum of the numbers of DOFs on the
separate subsystems. Thus we have introduced the concept of the
coupling DOFs, or coupling ‘coordinates’, as being those DOFs which
are essential to the analysis of the coupled system and which determine
the number of DOFs in the final assembly of the two (or more)
subsystems. The procedure described here can, of course, be extended to
include as many subsystems as required.

At this early stage we can introduce the difference between a
structural assembly and structural modification. If one of the
subsystems, say element B, comprised a rather simpler structure with
only two DOFs — the 2DOFs which are involved in the coupling — then
the assembled structure would have just the same number of DOFs as
the original subsystem, A. In this case we can talk of structure A being
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Fig. 6.18 Basis of coupled/modified structure analysis.
(a) Simple system; (b) General system

modified by the addition of subsystem B, although clearly the combined
system, C, is still a coupled or assembled structure in the strict sense of
that term. Thus we see that coupled and modified structures really are
one and the same thing at a theoretical level.

An extension of this simple example of the concept of coupled
structures is illustrated in the second Fig. 6.18(b) which again shows
two substructures. Here again we see the separate components, A and
B, which are to be coupled to form the complete system, C. Each
component is described in terms of a number of active DOFs, nA and
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ng , respectively, so that the assembled or coupled structure is
described by ng DOFs. If the number of common coupling DOFs is nc ,
then we can see that ng = n^ + nB -nc . The term ‘active’ DOFs is used
in this context because these numbers (n^ and ng ) are not necessarily
the numbers of DOFs that are included in the full description of the
components, which would be expressed as NA and Ng . It is perfectly
acceptable, for the purpose of a coupled or modified structure analysis
such as we are contemplating here, to confine our interest to a limited
number of DOFs, without in any way simplifying the description of the
model of the dynamic behaviour of the structures. We do this by
restricting our access to information about the response and/or
excitation at certain DOFs. This is a standard procedure in many types
of analysis for complex structures — and many applications of coupled
structure analysis are undertaken in this substructuring way in order
to make a large and complicated model more efficient - and represents a
very practical approach as, in the great majority of situations, there are
many DOFs at which there is neither excitation applied nor interest in
the response, but there is a compelling need to ensure that the
responses which are computed are accurate and not approximated by a
reduction or condensation process which has been applied to reduce the
size of the model and its computation.

So, to summarise these concepts, it may be useful to show how the
vectors containing the DOFs for each component in a coupled or
modified structure analysis are subdivided:

[ xa 1 j 'active'
[xA-aj ['inactive'

'coupling'or 'master'
'slave' or 'passenger' lxaa hinxl

As mentioned earlier, it is a straightforward matter to extend these
concepts beyond this simple two-component assembly to include the
more general case where the structure is assembled from many
components.

6.4.2 Approaches to the Analysis of Coupled Structures
There are two different approaches to the analysis of coupled or
modified structures (in addition to the obvious one of constructing a
spatial model that contains all the components explicitly — which is not
considered here as it offers no advantage or economy, which is the drive
behind the whole idea of structure assembly analysis). These are
methods based on (i) modal models and (ii) response models of the
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various structures and substructures involved. Simply put, the former
methods use the modal properties of the individual components to yield
the modal properties of the assembled or modified structure, while the
latter group derive the assembled structure’s response characteristics
based on the corresponding response properties for each component
individually.

Each of these two approaches has its advantages and disadvantages
so that there is no clear ‘correct’ way to proceed. Here we shall seek to
explain the principles and the major features of each approach, prior to
presenting the essential methodology of each. It should be borne in
mind at this stage, however, that we are here concerned with
applications of these ideas to experimentally-derived models of the
substructures and so we shall be heavily influenced by the ease or
difficulty of providing the necessary information about each
substructure from that perspective.

6.4.2.1 Modal methods
The modal model methods are more elegant and more concise in
presentation, demanding fewer calculations than the response methods.
However, it is necessary to define the properties of each substructure as
a modal model and that means that a full modal test and analysis must
have been successfully completed before the coupling can commence.
While this is no more than the expectation of a standard modal test,
there can be complications because the basic theory for coupled
structure analysis using modes is intended primarily for undamped
systems with real modes and although that theory can be extended to
damped systems with complex modes, the successful implementation of
such an extension is not universally achieved. The other problem with
the modal approach is that it is very sensitive to the number of modes
that are and need to be included in the modal model. Strictly, all the
modes are required for each substructure for the analysis to be correct
and this is clearly not feasible in the context of an experimentally-
derived model. The issues of just how many modes can be neglected and
the model still yield useful results, or how to compensate for the
missing modes (usually those at higher frequencies), remain the main
preoccupations of the users of this type of analysis.

It should be noted at this stage that ‘modes’ of a substructure
generally refer in this work to the modes of that component for the
conditions where the intended coupling boundary is completely free —
the sometimes called ‘free-interface modes’. The origins of some of the
modal coupling analysis procedures can be traced back to the early days
of developments of the finite element method when computer capacity
continually presented a barrier to the effective application of these
methods to increasingly complex structures. A solution to this problem
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of modal incompleteness, or modal truncation, was often found in those
early theoretical applications by the use of a second set of component
modes — the so-called ‘constraint’ modes — which relate to the modes
of the substructures with different boundary conditions imposed,
specifically ones where the intended coupling boundary was assumed to
be grounded. Such a technique is very effective at resolving the
problems which arise when only a limited number of the free-boundary
modes are available but, unfortunately for our applications here, these
constraint modes are not at all easily obtained in the experimental
context that we are considering here. It is simply not practical to
reconfigure the test set-up so as to provide grounded boundary
conditions at each of the coupling DOFs. Even if these DOFs were
readily accessible, the feasibility of providing a sufficiently rigid fixture
to approximate the required grounded condition is extremely remote.

Some attempts to provide a degree of the compensation afforded by
these theoretical constraint modes can be provided by using what we
have previously called perturbed boundary conditions, but that
complicates the analysis considerably and should not be entered into
lightly as a remedy for an inability to measure enough modes to yield a
representative modal model of (one of) our substructures.

One final comment regarding the modal approach: it is often the
case that the final output of a coupled structure analysis will be of its
response properties, and it is also the case that the origins of the modal
model of each substructure that is based on a modal test will be
response measurements. It should thus be recognised that any coupled
structure analysis which uses modes as the basis of the coupling will be
required to make a double transformation between the response and
the modal models — once, in order to convert measured responses into
the modal model and a second time to synthesise the required responses
of the final assembly from its constituent modes. The first of these
processes introduces errors from the modal analysis process and the
second introduces errors from the truncation implicit in the existence of
a limited number of modes. It is thus not surprising to find that there
are an alternative set of coupled structure analysis methods which are
based on the response properties directly, and these are introduced
next.

6.4.2.2 Response methods
The alternative approach to analysing the dynamics of an assembly of
two or more substructures is by combining the response properties of
each component separately. Most of the methods currently in use do
this by means of the FRF data: what is required from each component is
the FRF matrix relating all the active DOFs for each substructure as a
separate component, with its boundaries at the intended coupling DOFs
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free. In our simple example with two substructures, A and B, the ‘input’
to this coupling process will comprise two square FRF matrices, one
nA x nA and other nB x ng which will then be combined to yield a
corresponding FRF matrix for the coupled structure, C, which is

x The most common method of analysis derives an expression
for the coupled structure FRF as a simple combination of the two
component structure FRF matrices by applying the conditions of
equilibrium and compatibility.

The analysis using this approach is extremely simple and has the
advantage of making direct use of the quantities which are actually
measured in the modal test. It is particularly important to note that as
the analysis is performed directly at the frequencies of interest, there is
no inherent limitation due to the truncation problem encountered in the
modal approach and so the number of modes encompassed by the modal
test is not an issue, so long as the test covers the entire frequency range
that is of interest to the final model. However, this approach has as a
disadvantage, the requirement that the full matrix of FRFs must be
supplied, at every frequency of interest to the final assembled structure.
This means, first of all, processing a large amount of data, much more
than in the case of the modal model, and specifically of a large number
of response functions. In a conventional modal test, not all the FRFs in
the matrix are measured: usually, only those in one row or a few, are
measured directly and so the need to provide the full matrix either
requires the measurement of much more data than would normally be
called for, or some means of deriving (synthesising) the unmeasured
functions for the purpose of the coupling analysis. This feature is a
particularly onerous requirement in the case of systems with non-
symmetric matrices, such as the cases discussed earlier in respect of
structures with rotating components, although in some of those cases, it
may well be possible to exploit the skew-symmetry features which are
the primary source of non-symmetry so that only one half of the full
FRF matrix needs to be defined in full.

6.4.3 FRF Methods of Coupled Structure Analysis — General
For reasons that will become clear as we progress through this section,
it is convenient to describe the response methods of analysis before
those of the modal approach. We shall deal first with the method which
works in terms of the frequency response properties directly, and which
provides as output the frequency response characteristics of the coupled
structure. Having said that, however, it is quite possible that the
required FRF data may be obtained from a modal model of the
components concerned as that is sometimes the most effective way of
storing information on a substructure’s dynamic characteristics.

This method is often referred to as the ‘impedance coupling method’
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Fig. 6.19 Basis of FRF coupling analysis.
(a) Simple case; (b) General case

or the ‘dynamic stiffness method’. The basic principle is demonstrated
by the simple example shown in Fig. 6.19(a) in which the two
components A and B are to be connected by the single coordinate x to
form C. It should be recalled that the number of DOFs used in the
coupling process (here, one) does not restrict the number of degrees of
freedom which may be possessed by each component except that this
latter number should be at least as great as. the former. Thus, in this
case, components A and B may both possess several degrees of freedom
each, even though only one DOF is included for the purpose of coupling
the components together. The implication of the notation and analysis
which follows is that the system behaviour is not fully described in the
spatial sense. However, those coordinates which are included will
exhibit the full range of resonances possessed by the system.

If we consider the dynamics of each component quite independently,
we can write the following equation for subsystem A when a harmonic
force f A (t) = F Aeus>l is applied at the connection DOF, then we can
write:

X^1=HA((a)FAeUs>t or Xa=HaFa (6.31)

and similarly for subsystem B\
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xb=hbfb (6.32)

Now, if we consider the two components to be connected to form the
coupled system C, and we apply the conditions of compatibility and
equilibrium which must exist at the connection point, we find:

xc=xA=xB
Fc =Fa+ Fb

so that:

11 1
Hc~ Ha+Hb

which can also be written as:

*0

(6.33)

(6.34)

or

= zc = A + (6.35)

Clearly, these expressions can readily be extended to the case where
there are several DOFs involved in the coupling process, although no
other DOFs are included in the analysis:

[He?1 (6.36)

Thus we obtain the FRF properties of the combined system directly in
terms of those of the two components as independent or free
subsystems. The equation can be expressed either in terms of the
receptance (or mobility) type of FRF, as shown, or rather more
conveniently in terms of the inverse version, dynamic stiffness (or
impedance). Although it makes little difference in this instance, when
we extend the analysis to the more general case where the coupling
takes place at several DOFs, and there are also DOFs included which
are not involved in the coupling, the impedance formulation is much
more straightforward algebraically.

It will be noted that equation (6.36) has a form which renders it
inconvenient for numerical application because it involves no less than
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three matrix inverse operations. In order to improve this situation, the
following analytical development can be made:

so that

[HcHhbMhbMhaIHha] (6.37a)

which is a much more efficient formula from the numerical viewpoint.
Yet another version can be readily derived from (6.37a) in a format
which is more appropriate for modification applications, as:

= [Ha ]- [Ha ]+ [Ha D’1[#a ] (6.37b)

The above simple analysis can be extended to the more general case
illustrated in Fig. 6.19(b). Here it is convenient to note that the
receptance FRF properties for component A are contained in a matrix
which can be partitioned as shown below, separating those elements
which relate to the coupling DOFs from those which do not:

[Hj= H*
H^

Hac (6.38)

This receptance FRF matrix can be used to determine the
corresponding impedance FRF matrix as follows:

[^[Ha]'1 7 A^ac7 A^aa
7 A
_ca

(6.39a)

Similarly, we can write a corresponding impedance FRF matrix for the
other component, B, as:
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nB xnB

zhhbb
zb^cb

7^^bc
7B^cc

(6.39b)

By an application of the same equilibrium and compatibility
conditions as used before, we can derive both a receptance an
impedance version of the FRF matrix for the coupled structure of the
form:

where

[Zdncxnc — ®[^B]nBxnB
zt 0 z*U'U' C^V

— 0 7& 78~ U £bb , £bc ,

Z^ Z^ (z^+z^lca cb \ cc cc Jd*

(6.40)

This expression clearly provides a rather inefficient means of deriving
the required FRF matrix for the coupled structure, [Hp], because it
requires the inverses of three matrices, of orders, nA , ng and ng ,
respectively. As these numbers are likely to be relatively large, and for
the corresponding number of coupling DOFs (nc) to be relatively small,
this is a calculation of a much greater order than the essential one in
which only the coupling DOFs are included (equation 6.36).
Fortunately, it is possible to make an extension of the analysis shown in
equation (6.37) so that we can write:

[HC]=
H?ba

ttC ttCHac Hab
jtC TjCHcc Hcb

uC ttC

Hac
Hcc

0

H*
H^a

0

ncxnc
B
cc ITTA rjAnca ncc (6-41)
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This equation constitutes the most general formula for this approach to
coupled/modified structure analysis and can be seen to be dramatically
more efficient computationally than the earlier expression in equation
(6.40). This characteristic is a direct result of the single (rather than
triple) inversion that must be computed at each frequency, ®, and the
fact that the order of that single inverse is just nc , in place of the three
matrices of orders nA , ng and n^ , respectively. (This is particularly
significant because typical practical cases might be expected to possess
values for these indices of the order of, say 300, 400 and 650 for nA ,
ng and , and of 50 for nc , resulting in an enormous difference in
the computation time to obtain each point on the frequency scale — of
the order of 1000 times, if the time to compute a matrix inverse is taken
to be proportional to the (order)3.

Case study
An example of the application of this method to a practical structure is
shown in Figs. 6.20 and 6.21. The problem called for a complete system
model of the helicopter/carrier/store assembly shown in Fig. 6.20(a).
The essential components or subsystems are illustrated in Fig. 6.20(b)
and it was decided to study each by the method felt to be most
appropriate in each case: theoretical models for the store and struts
plus a modal model from modal tests for the airframe (although a model
which is confined to the points of interest on the side of the fuselage)
and likewise for the platform. Because of the construction of the system,
it was necessary to include several rotation coordinates at the
connection points in order to create a truly representative model and
where these were required in the experimentally-derived models, the
appropriate FRF data were measured using the method described in
Section 3.11. An example of a typical measured airframe mobility,
together with its regenerated curve based on the SDOF curve-fit
method of Section 4.3, is shown in Fig. 6.21(a). Also, a corresponding
result for the platform and store substructure, this time analysed using
the lightly-damped structures MDOF modal analysis method of Section
4.4.4, is shown in Fig. 6.21(b). One of the set of final results for the
complete model, constructed by impedance coupling, is shown in
Fig. 6.22 together with measurements made on the complete assembled
structure — a result not untypical of what can be expected for this type
of complex engineering structure, [63].

If it were required to determine the modal properties of the
combined assembly, rather than the FRF properties shown here, then it
would be necessary to subject these last FRFs to some form of modal
analysis or to use a different approach to the whole analysis, such as
described in the next sections.

One final comment which should be made is to note or to recall that
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Fig. 6.20 Components and assembly for coupled structure analysis,
(a) Complete system; (b) Components and connections
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Fig. 6.21 Measured and regenerated FRF properties.
(a) Airframe (using SDOF analysis); (b) Carrier (using MDOF
analysis)
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-to

Fig. 6.22 Structural assembly FRF data: measured and predicted from
coupled structure analysis

the FRF properties used in this approach must be as accurate as
possible. This, in turn, requires that as many of the components’ modes
as possible should be included in any modal model or data base that is
used to regenerate the receptances used in the analysis. Where it is
unfeasible to include a near-complete set of modes, then it is necessary
to ensure that those excluded are represented by some form of residual
terms, as described in Section 4.3.6, in order to ensure that the
regenerated FRF data are accurate away from the component
resonances as well as close to them. The reader is referred back to
Section 5.5 for a discussion on the importance of this aspect.

6.4.4 FRF Methods of Coupled Structure Analysis —
Simplified Expressions for SDOF Connections

While the preceding section provides the most general form of the
response function method of analysis for coupled and modified
structures, there are a number of situations which make use of only the
simplest versions of the expressions developed there. These situations
tend to be concerned with applications of relatively simple modifications
and also those where a study is being made to identify the best places to
introduce modifications in order to bring about desired changes to the
original structure’s performance. The direct modification application
poses the question: ‘what will be the changes to the structure’s dynamic
properties if a specific modification is applied at a given point?’. This
question can readily be answered using the structural
modification/coupling analysis already presented. However, the more
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subtle version of the same question, and the version which has more
practical value, is: ‘what modification should be made to the original
structure in order to bring about a prescribed change to its dynamic
properties?’. This second version is much more difficult to answer
because there are so many possible solutions (so many alternative
modifications that could be applied) but we can devise a systematic
approach to answering it by using a development of the analysis
presented above.

In this section we shall be concerned with simple, single-DOF,
modifications or additions to the original structure and so we shall use
the scalar, rather than the matrix, version of the equations given in
equations (6.37) and (6.41).

Consider, as shown in Fig. 6.23, the original system and the
possibility of adding at DOF i an SDOF modification, B, which consists
of a mass, or a stiffness or a damper — or, indeed, an SDOF damped¬
spring-mass absorber. The FRF of the added component, HB , can be
expressed as:

HB = for a mass,
-co2 mB

HB — for a stiffness, or
kB

Hb = — for a damper,
iacB

or

///////////
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H + icoc -co m) for the mass - spring - damper
B co2 m^k +iac) absorber subsystem

and we can use equation (6.41) to derive a general expression for the
FRF of the system which is modified by the addition of B as:

(6-42)

where either j or k might or might not be i. An example of using these
formulae is given in Fig. 6.24 which shows the result of using equation
(6.42) to compute the effect on the point FRF at a chosen point along a
free-free beam of adding a mass to the measurement point. Fig. 6.24(a)
shows the measured curve (as a series of points) plus the predictions
made of the expected modified curve after a mass of 1 kg has been
added to the measurement point. Then, in Fig. 6.24(b), the same
predicted FRF is shown again, but this time with a second experimental
curve, measured after the proposed modification had been added to the
original test structure. The effectiveness of the prediction is clear, even
though the quality of the prediction falls away towards the top end of
the frequency range. (In fact, this growing discrepancy can be seen to be
due to the limitations of assuming a single-DOF coupling: an
assumption which becomes blatantly less and less realistic as the
frequency of vibration increases, and thus the distortion of the
structure, becomes increasingly complex and multi-directional.)

One interesting (and, often, useful) result that can be deduced from
these equations is the fact that if we take a structure and ground it at a
particular DOF, then the natural frequencies of the thus-grounded
structure will be identical to the antiresonance frequencies of the
structure at the chosen DOF in its original free configuration. (This
result can be obtained from equation (6.42) by letting II g tend to
infinity.)

A second series of simple modifications can be constructed by the
addition of a simple spring, or damped spring, which is attached
between two DOFs on the primary structure, A, or which connects a
single DOF in each of two structures, A and B. These situations are
shown schematically in Fig. 6.25, and analysis similar to that used to
derive equation (6.42) can also be made to derive the following
expressions for the FRF data of the modified/coupled structures, A and
B-.
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Fig. 6.24 Practical example of SDOF modification.
(a) Original measured FRF; predicted modified FRF;
(b) Measured modified FRF; predicted modified FRF

HA = HA ~(ha +Ha+HA -2HaVu u \ u ij J \ R u jj ij /

and (6.43)

= HA +(h^ - HA )(ff£ - HA + HA - 2HAPIJ IJ ' ll IJ /X JJ IJ /X ll JJ IJ /

Note: if i and j are initially on separate components, then = 0.
A second version can also be derived in the case where the added

connection is rigid (i.e. = 0), in which case we find:
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HA =HA -(ha -Ha\(ha+Ha -2HaV
ll ll \ ll IJ / \ ll JJ I] /

(6.44)

because i and j are the same DOF. Also, for two DOFs, p and q, which
are independent of the connection DOFs:

=HA+(ha -HA\HA -Ha\ha +HA -ZH^ (6.45)PQ Pa \ pj pi/\ jq iq /\ u JJ ij / v ’
In each of these simple cases, the reduced SDOF coupling condition is of
restricted validity but is useful nonetheless in identifying trends and
comparative modification effects.

6.4.5 Sensitivity to Simple Modifications
One additional feature that is worth noting from this study is the one
whereby the sensitivity of the structure to these simple modifications is
evaluated and then used to assess the effectiveness of introducing a
given modification at a number of alternative sites. Fig. 6.26(a) shows
the effect on a particular FRF from a simple beam of adding
successively larger masses to the measurement point (calculations
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Free-Free Beai with SDoF Maas Modifications.

Log (Frequency; Hz)
(a)

Added Hass (Kg) .
(b)

Fig. 6.26 Natural frequency sensitivity to structural modification.
(a) FRFs for different mass modifications at driving point;
(b) Variation of natural frequencies with added driving point
mass
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made using the formula in equation 6.42a). From this plot is clear that
adding progressively more and more mass at the drive point results in a
progressive lowering all the resonance frequencies (as is expected) but
that these drop asymptotically towards fixed values which coincide with
the preceding antiresonances. This result can also be inspected using
the plot on Fig. 6.26(b) which shows the changes in resonance and
antiresonances explicitly. This latter plot also illustrates a property
which is of direct use to us in our attempts to optimise structural
modifications (by bringing about the desired changes with the
minimum added material and with a minimum of unwanted secondary
effects). That property is the sensitivity of each resonance frequency to
adding a mass (or a spring, for the corresponding plot which could be
drawn for added stiffnesses) at the measurement point for the reference
FRF. This sensitivity is, simply, the slope of the corresponding natural
frequency vs. added mass curve at the reference position of zero added
mass — see Fig. 6.26(b). In Reference [64] a derivation is shown of an
algebraic expression for this sensitivity which is as follows:

1 d(Dr

a? dkJ
(6.46)

where r is the resonance in question, j is the DOF to which the FRF and
modification apply, and m is the number of modes visible in the FRF. It
will be seen that these sensitivity coefficients can be computed for a
selection of potential modification sites by making point FRF
measurements at the DOFs in question. Then, based on an inspection of
the resulting values, an optimum location can be selected which has the
desired effect in terms of changing certain natural frequencies without
necessarily changing others. A practical example of the application of
this technique to an aerospace structure is shown in Fig. 6.27, where (a)
the original measured, (b) the predicted modified and (c) measured
modified FRFs are shown, confirming the effectiveness of the simple
analysis method in cases such as this.

6.4.6 Derivation of the Component FRFs
There are several ways of providing the FRF data which are required
by the various processes described above to analyse coupled structures,
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Fig. 6.27 Practical application of structural modification to aerospace
structure

and these include:

(i) direct computation from mass and stiffness matrices: note that
[ZWHW1=([#]- (a2 [M]);

(ii) direct analysis of beam-like components for which analytical
expressions exist for the required receptance or impedance
properties;

(iii) direct measurement of a receptance or mobility FRF matrix;
(iv) extension of (iii) by smoothing the measured FRFs before further

computation so as to minimise adverse effects of ill-conditioning
caused by noisy data (this smoothing can be achieved using the
samecurve-fitting procedures used in the modal analysis process);
or

(v) computation of receptance FRF data from a modal model, using
the formula:

(6.47)



492

In the last three of these options, it may be necessary to invert the
receptance FRF matrix originally supplied in order to obtain the
impedances which are necessary for the some parts of the coupling
process and care must be taken to prevent this inversion from becoming
ill-conditioned. In case (iii), this will be a possibility because of the
inevitable small errors contained in the measured data. This can be a
particular problem with lightly-damped structures when there is likely
to be a ‘breakthrough’ of component resonances in the coupled structure
response characteristics: sometimes there appear spurious spikes on the
coupled structure FRF plots in the immediate vicinity of the natural
frequencies of one or other of the separate components. This is less of a
problem with less strongly resonant components, such as those with
some damping and a relatively high modal density. In this latter case,
the direct use of raw measured FRF data may be a more attractive
prospect than the alternative of deriving a modal model by curve-fitting
what might well be very complex FRF curves.

In the fifth of the above approaches, there is a requirement that the
receptance matrix is not rank-deficient so that its inverse does exist. In
order for this condition to be satisfied, it is necessary that the number
of modes included in the modal model is at least as great as the number
of DOFs used to describe that particular component. At the same time,
consideration must be given to the possibility that a matrix of residual
terms may be required in order to account for the effect of those out-of-
range modes which are not included in the modal model, as discussed in
Section 5.5. In many cases, the only way of avoiding the need for
obtaining such a residual matrix is by including many more modes in
the components’ modal models than are contained within the frequency
range of interest; e.g. where the final coupled structure properties are
required between, say, 40 and 400 Hz, it may be necessary to include all
the components’ modes in the wider frequency range 0 to 1000 Hz (or
even higher). It should be emphasised here that this problem (of
incompleteness in the model derived from tests) constitutes one
of the most serious limitations to the successful application of
coupled and modified structure analysis. At the same time as this
warning is issued, it is also timely to recall that all the DOFs which are
involved in the coupling must be included in the substructure models.
The difficulty that this often represents is the need to include rotational
DOFs and these, as has been discussed in earlier chapters, can be much
more difficult to obtain than their translational counterparts. It is for
this application that methods to derive these RDOF data indirectly
using a mode expansion approach were discussed in Section 5.3.3.
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6.4.7 Modal Analysis of Coupled and Modified Structures
As mentioned earlier, there are also methods for analysing coupled and
modified structures which are based on modal models, and we shall
summarise the more important of these next. Also as mentioned earlier,
many of these modal methods are derived from the substructuring
methods developed for finite element modelling and are somewhat less
readily adapted for our current application — where the structural
models are to be derived from test data.

6.4.7.1 Simple modification analysis
The first method to be outlined here comprises the basis of many of the
first-level structural modification routines that became available as
part of the modal analysis packages of the 1980s and early 1990s and is
aimed specifically at this application.

For the general 7VDOF system, we can write the equations of motion
for free vibration in the form:

MaxnW+KW={o} (6.48)

or, using the standard transformation to modal coordinates, as:

MnxN {p}+ [®r ]W= fa} (6-49)

where

This full set of equations can be reduced in the event that only m of the
modes are known, to:

[4nxm{p}+[®r]W={°}
Now suppose that we wish to analyse a modified system, whose
differences from the original system are contained in the matrices
[AM] and [AA] . (Note: it is assumed that the same DOFs are used in
both cases: methods for analysing rather more substantial modifications
such as adding components will be discussed in the next section.) The
equations of motion for the modified system may be written as:

(M+ [AM]){x}+ ([a]+ [aa]){x}= {0} (6.50a)
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or, using the original system modal transformation (noting that the
eigenvectors and eigenvalues are NOT those of the new system but of
the unmodified structure), as:

(6.50b)

In general, we shall have information about only m (< N) modes and
these will be described at only n (< N) DOFs. However, using this
equation we have established a new equation of motion with a new
mass matrix [M'} and stiffness matrix [A'] , both of which can be
defined using the modal data available on the original system (such as
might be provided by a modal test) together with a description of the
changes in mass and stiffness which are to constitute the structural
modification:

Lixm = Mmxm +[O]nxn nxm
, , (6.51)

The eigenvalues and eigenvectors of these new mass and stiffness
matrices can be determined in the usual way, thereby providing the
natural frequencies and mode shapes of the modified structure.

It is worth adding one or two comments concerning the implications
of using this technique on real engineering structures. These all stem
from the fact that it is much easier to specify changing individual
elements in a mass or stiffness matrix than it is to realise such changes
in practice. For example, if we wish to add a mass at some point on a
structure, it is inevitable that this will change the elements in the mass
matrix which relate to the x, y and z directions at the point in question
and will also have an effect on the rotational motions as well since any
real mass is likely to have rotary inertia as well. This means that it is
seldom possible or realistic to consider changing elements individually,
and also that it may be necessary to include rotational DOFs in the
original modal model. This last consideration is seldom made, thanks to
the difficulty of measuring rotations, but should be if reliable
modification predictions are to be made. Similar comments apply to the
stiffness matrix: the attachment of any stiffener, such as a beam or
strut, will influence the stiffness in several directions simultaneously,
including rotational ones. Lastly, it must be noted that this method, in
common with all which rely on a modal data base that may not include
all the structure’s modes, is vulnerable to errors incurred if the effects
of the modes omitted from the modal model — typically, the high-
frequency modes — are (a) not negligible and (b) ignored. This point
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will be discussed further in the next section.

6.4.7.2 General coupled structure modal analysis
The second method to be outlined here is a more general approach to
the analysis of coupled structures using the modal models of each
component and deriving the model of the assembled structure directly
in a modal format. As with the other methods which have been
described in this section, we present here just the basic method and the
reader is referred to more specialist works for a detailed discussion of
the methods.

The basic method applies to the two-substructure system shown in
Fig. 6.28 with a connector element, CC, which comprises just stiffness

Fig. 6.28 Assembled structure with connector component

and damping elements and represents the existence in real structures
of an interface between any two components. As in the previous section,
we can write the equations of motion for each of the two components
separately as:

[MAk,*Na }+ [#A ]{*A }={fA }

and (6.52)

[MB Lvb xNb ^B }+[Xb }= {fB }

where the only forces present are those at the connection DOFs. These
equations can be transformed into the modal coordinates as follows:

Mm.i xmA {pa }+ ]{pa}~ A xm4 ^A }

and

{pb}+[®b]{pb}= ^b}
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and combined to yield:

1 0'PM+ 0

° \pb J o co^ [pb
0 1/M

0 o^JI/bJ (6.53)

where mA , nA , etc. represent the numbers of included modes and
component DOFs, respectively, and are both < NA,etc.. These two sets
of equations are in fact linked through the connecting element, CC, by
the relationship:

fl = [^Cc]|A
ZBJ(nA+nB)Xl lXB

[oj 0 1IpJ

° [^bL IpbJ (6.54)

If there are no external forces applied to the coupled structure, then we
may write:

0[^cc]
0>B00

A
0

0

Opl-PB
^Mo} (6.55)
Pb J

o

and this equation can be solved for the eigenvalues and eigenvectors of
the coupled system. The number of modes of this coupled system will be
seen to be determined by the number of modes included in the coupling
process (mA, mb), rather than by the numbers of DOFs in the
subsystems, (NA, Nq~). The main drawbacks of this approach are the
exclusion from the analysis of (a) many of the DOFs which are required
to describe the dynamic behaviour of the structures and (b) the higher
modes whose contribution to the analysis can be very important, even
though their own natural frequencies may be much higher than the
frequency range of interest (the modal truncation problem, referred to
previously). Both of these limitations can be addressed by including
more information in the analysis, although that is done at the expense
of a loss of the relative simplicity of the formulation. Full details of
these refinements of this approach can be found in the relevant
literature but we shall here show an extension to deal with the latter
problem as that is a major obstacle to the successful use of coupled
structure analysis.

It has been shown in earlier chapters that the effect of out-of-range
high-frequency modes can be approximated by residual terms which are
essentially damped springs and the high-frequency residual flexibility
matrix for a structure such as subsystem, A, referred to the DOFs at the
coupling points, can be represented approximately by:
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kr
9where the co terms are eliminated because they are much smaller

than the co^ terms. There will be a similar residual flexibility for
substructure B and these two matrices can be combined to constitute
the stiffness matrix of the connecting element, [Kcd > as follows:

^CC]=([^4]+ [KBD

This equation provides a useful means of predicting reliable estimates
of the coupled structure’s behaviour, as illustrated by the example
shown in Fig. 6.29, which relates to a test structure for studying
vibration isolation in ships. The analysis performed coupled the beam to
the hull section at the junction point by coupling these two components
in the three in-plane DOFs (x, y, 0Z). The results shown in the figure
refer to the tip FRF at the free end of the beam after coupling and the
two curves show the predicted curves with and without the correction
for the out-of-range high-frequency modes, and are compared with the
actual measurements on the assembly. It is clear that in this example
the residual effects play a major role in determining the vibration
properties of assemblies such as this, but also that it is possible to
account for these effects and to make a useful analysis of the coupled
structure.

6.4.8 Concluding Discussion
As with the earlier application of model validation, this section has
shown a multiplicity of methods and approaches to the task of
predicting the dynamics of an assembled or modified structure from a
knowledge of the corresponding dynamics of its component parts. Once
again we find that a simple and well-defined requirement is more
difficult to attain than first expected. Here, as in the other applications,
the main obstacles to be overcome are, of course, inaccuracy in the data
which are supplied from measurement and, although less immediately
obvious, the incompleteness of information which is an inescapable fact
of life when dealing with practical testing.

The major problem is that of modal truncation — the difficulty of
compensating for the absence of explicit information concerning the
out-of-range modes of the substructures — and many of the special
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Fig.6.29 Practical application of modal coupling analysis

techniques are aimed at minimising the consequences of this problem.
In addition, there are related problems of incompleteness which arise if
the coupling procedures demand information for DOFs which are
difficult to obtain experimentally, such as is the case for many
rotational motions (the RDOFs). Careful consideration must always be
given to the completeness of the data obtained for the substructures as
well as to its quality.

The other problem often encountered in application of the various
coupling analysis methods described above is ill-conditioning in some of
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the matrix operations, especially those of inversion. This can happen if
the elements of the matrix contain noise, as is likely in the case of
matrices populated with raw measured data, but it also occurs if the
essential information is poorly-defined. This can happen if the data are
significantly inter-dependent — a situation which can arise if, for
example, two DOFs are included in the analysis and yet the limited
resolution available in the measured data mean that those two DOFs
yield apparently identical data. The practical significance of this
situation is that only one of the two DOFs is strictly necessary and the
inclusion of both can cause a deterioration in the analysis. The solution
here is to eliminate one of the two DOFs — not always the obvious
conclusion. Once again, we see that great care and some experience is
required for the successful application of these methods, but, on the
other hand, we have seen that successful applications are perfectly
accessible when the necessary steps are followed.

6.5 RESPONSE PREDICTION AND FORCE
DETERMINATION

6.5.1 Response Prediction
Another reason for deriving an accurate mathematical model for the
dynamics of a structure is to provide the means to predict and/or to
understand the response of that structure to more complicated and
numerous excitations than can readily be measured directly in
laboratory tests. Thus the idea that by performing a set of
measurements under relatively simple excitation conditions, and
analysing these data appropriately (i.e. a modal test), we can then
predict the structure’s response to several excitations applied
simultaneously.

The basis of this philosophy is itself quite simple and is summarised
in the standard equation for a single-frequency component of forced
vibration with excitation forces and n2 response measurements:

{Xkxl xi (6.58)

where {F} is the vector of excitation forces, {X} is the vector of
responses (or the Operational Deflection Shape — ODS). The required
elements in the FRF matrix can be derived from the modal model by
the familiar formula:

_ Mz^xzn [(^r 10 jlnxm Mmxzij

A simple example illustrates the concept. Fig. 6.30 shows a
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cantilever beam with six responses of interest and two excitation
positions (coinciding with two of the responses). A modal model was
formed for the beam referred to the six coordinates shown using
standard single-point excitation FRF measurement methods followed
by curve-fitting. It was then required to predict the responses at each of
the six points to an excitation consisting of two sinusoidal forces applied
simultaneously, both having the same frequency but with different
magnitudes and phases. Thus the following calculation was performed
at each of a number of frequencies in the range of interest (30-2000 Hz):

Fig. 6.30 Beam structure used for force determination

(6.59)

The results are compared with actual measurements (made here for the
purpose of assessing the validity of the method) and a typical example
of these is shown in Fig. 6.31, where it can be seen that the predictions
are very reliable indeed, even though we are calculating six response
quantities from only two excitations.

In general, this prediction method is capable of supplying good
results provided sufficient modes are included in the modal model from
which the FRF data used are derived.

6.5.2 Force Determination
6.5.2.1 Basic method
Although used less frequently, the inverse calculation procedure to that
just described is also a potentially powerful application of a modal
model: that of deducing unmeasurable excitation forces from knowledge
of the responses they generate. The basic idea of force determination is
very similar to that of response prediction except that in this case it is
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the excitation forces which are predicted or ‘determined’. Here, it is
proposed to use n2 measured responses together with knowledge of the
dynamic characteristics of the structure in order to determine what
must be the ni forces which are causing the observed vibration.

The basic equation is simply the inverse of the previous case and is:

e“‘ = {X)v1 (6.60)

Fig. 6.31 Responses predicted from measured forces

However, once again we encounter the difficulty of inverting the
rectangular and possibly rank-deficient FRF matrix in order to apply
equation (6.60). To accommodate the former characteristic, we can
make use of the pseudo-inverse matrix but in order to proceed it is first
essential that there be at least as many responses measured as there
are forces to be determined (?i2 >^i)- This is a restriction which does
not apply to the response prediction case. In fact, it transpires that it is
advantageous to use several more responses than there are forces to be
determined and to use the consequent redundancy to obtain a least¬
squares optimisation of the determined forces. Thus we may write our
basic equation for finding the excitation forces as:

=[#(<,xn2M21xl
where
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(6.61)

(Note: when using complex FRF data for damped systems, it is
necessary to use the Hermitian transpose in place of the ordinary
transpose shown here.)

6.5.2.2 Practical case study
Once again, we shall use the simple cantilever beam shown in Fig. 6.30
as an example, referring first to a series of measured results and then
later to a numerical study made to explore the behaviour of what turns
out to be a calculation process prone to ill-conditioning.

In the first example, the beam is excited simultaneously at two
points with sinusoidal forces of the same frequency but differing
magnitude and relative phase and we measure these forces and the
responses at six points. Using the previously-obtained modal model of
the beam (see Section 6.5.1) together with the measured responses in
equation (6.61), estimates are made for the two forces and the results
are shown in Fig. 6.32 alongside the actual measurements of the forces.
Close examination of the scales on these plots will show that the
prediction of the forces is very poor indeed, especially at lower
frequencies; the estimates sometimes being greater than an order of
magnitude different from the measured data and of the opposite sign!

GRAPH OF PREDICTED AND MEASURED FORCES
6 RESPONSES - 2 FORCES
FORCE RT STATION 5

Fig. 6.32 Forces predicted from measured acceleration responses
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It was observed in the course of a numerical simulation of this study
that if strain gauges were used to measure the response (instead of
accelerometers, or displacement transducers), then much better results
would be obtained for the force estimates. Turning to the experimental
investigation and using strains instead of acceleration, results in the
predictions shown in Fig. 6.33 which, while not perfect, are a
considerable improvement over those derived from acceleration
measurements, Fig. 6.32. Further details may be found in Reference
[65],

GRAPH OF PREDICTED AND MEASURED FORCES
6 RESPONSES - 2 FORCES
FORCE AT STATION 5

FREOUEKCr I HZ I

Fig. 6.33 Forces predicted from measured strain responses

Clearly, the determination of forces from response measurements is
considerably more difficult an application for a modal model than is the
corresponding calculation of responses from given or measured forces.
Accordingly, it is appropriate to study the problem in a little more
detail in order to understand why this is so, and to see what can be
done to ameliorate what appears to be an unacceptable level of error in
this important application. This we shall do via a simple numerical
example.

6.5.2.3 Simple case study of force determination
Consider the case where we have a system with three inputs ({F} ,
excitation forces) and five outputs ({X} , response ‘measurements’), and
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the FRF matrix which links these excitations and responses is [H(co)] .
Suppose that at a specific frequency of vibration, the three quantities
have the numerical values given below:

-0.8251
5"
5

i
2

6
7

11’
12

0.750 • ; Wo =• 5 ;[W= 3 8 13
0.125 5 4 9 14

5 5 10 15

If we use the force vector, {F}0 , and the FRF matrix, [H(<o)] , to
compute the responses, we see that the calculation is correct.

’1 6 11’ 5
2 7 12 f-0.8251 5
3 8 13 0.750 • = 5-Wo
4 9 14 0.125 5
5 10 15 5

However, if we seek to perform the reverse calculation, using the given
responses, {X}0 , and the generalised inverse of the FRF matrix,
[H(m)]+ , to determine the forces, {F}! , we obtain an unsatisfactory
result because when we use {F}x to re-compute the responses, we do
not recover the vector used at the outset. We find:

-0.47
0.31
0.31

which gives:

1

Wl=
2
3
4
5

6 11
7 12
8 13
9 14

10 15

-0.47
• 0.31 •

0.31

4.84
5.00
5.16
5.31

*Wo
5.47

Clearly, the complete circle of calculations from forces to responses, and
then back to forces, is ill-conditioned, and invalid. A closer examination
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of the FRF matrix [77(co)] reveals that this is singular, and thus the
calculation made using its generalised inverse is necessarily ill-
conditioned and the resulting matrix [77]+ is unreliable. We can
investigate the condition of the matrix via the Singular Value
Decomposition (and, indeed, we can use this procedure in order to
obtain an inverse of the [77] matrix). If we perform an SVD on [77] we
obtain the following singular value matrix:

35.13 0 0
0 2.465 0

[*]= 0 0 2.84xl0~15
0 0 0
0 0 0

which clearly shows a matrix having one ‘zero’ singular value which
indicates that the original matrix is of rank 2, even though its order is
3. This means that the [77] matrix is singular and any attempt to
perform an inverse calculation with it is doomed to unreliability.

In spite of this unfortunate feature (to which we shall return later
for an explanation of what it signifies), the SVD is able to provide an
inverse of [77] which we can use for further analysis. This, when used
with the observed response vector, {X}0 , yields a solution for the
unknown forces, {F}2 , of the form:

-0.5
0
0.5

so that

1

=

5

6

7
8
9
10

11
12
13
14
15

Re-calculation of the responses, using this force vector, shows that the
solution obtained, {X}2 , is, indeed, a valid one, because the computed
responses are identical to those used at the start of the analysis, and it
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must be assumed that this solution is better than the first one obtained,
which was not able to reproduce the initial vector of responses.

So, what is it that distinguishes the first, unsuccessful, solution,
{F}i , from the later, successful one, {F}2? And is the second solution
really a true solution at all? Also, what is the significance of the rank
deficiency of the [H] matrix? and what has been done by using the SVD
to obtain an inverse, when strict interpretations indicate that one does
not exist? The answers to these questions are surprisingly simple: the
essential problem is that the system represented by the FRF matrix,
[H], has only two degrees of freedom, even though there are three
excitation DOFs and five response DOFs. As a result, the rank of the
FRF matrix is only 2, as indicated by the SVD analysis. Also as a result,
only two independent forces can or need be defined to specify any
possible excitation condition and so a vector which contains three
elements is over-determined. In practice, there are an infinity of force
vectors which are capable of producing a specified response pattern,
such as the one introduced in this example. That means that there is no
unique solution to the problem which has been posed, and the result
which has been yielded by the SVD analysis is just one from that wide
range of possibilities.

So, the answer obtained by direct generalised inverse is unreliable
because no account was taken of the ill-condition and singularity of the
FRF matrix. The answer obtained by the SVD analysis is a valid
solution, but is not the solution. Although a specific force vector was
specified at the outset of the problem, it is not possible to derive that
solution: it is only possible to derive one which produces the same
response. In fact, the solution which is derived by the SVD approach is
the force vector which has the lowest norm, and is thus based on a
purely numerical property and has nothing whatsoever to do with any
physical considerations.

The results from this simple case study can be read across to the
more complex cases encountered in practice. Accordingly, considerable
attention must be paid to the condition of the matrix of response
functions that is to be used in the determination of the unknown forces
from measured responses. If study of this matrix reveals that it is
heavily rank-deficient, then a reliable solution cannot be obtained for
the case being considered and, most probably, measured response data
from additional or alternative DOFs would need to be provided in order
to improve the condition of the analysis to the point where a reliable
solution can be obtained. If this cannot be achieved, then force
determination may not be possible, as was the situation in the lower
frequency range of the practical case study presented above.
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6.6 TEST PLANNING
6.6.1 Test Planning and Virtual Testing
One of the major changes that has taken place in the past two decades
of modal testing practice is a much increased awareness of the cost of
testing and of the need to optimise each test. In the past, modal tests —
like many other types of test — were often planned on the basis that as
many parameters as possible would be measured and as much
information as possible would be extracted from the resulting data.
Nowadays, it is realised that this is not always an efficient strategy and
that there is considerable advantage to be gained from considering
carefully, in advance of any testing, exactly which data should be
measured for maximum benefit; which data are relatively unimportant
to the final application and, generally, how the test should be conducted
for maximum effectiveness. These changes in test philosophy have
given rise to a new application area which we shall call ‘Virtual
Testing’, in which the general idea is to conduct a rehearsal of each
modal test in a computer simulation before any extensive actual testing
is carried out. It is believed that by this strategy, much more effective
testing can be achieved, with a considerable reduction not only in (i) the
total time and cost of each test, but also in (ii) the instances of poorly-
identified modes, (iii) wasteful redundancy of measurements and (iv)
failures to obtain critical data by poor choices of measurement set up —
all features of more traditional testing which relied so heavily on the
skill of the experimenter.

Thus we can define virtual testing as a set of processes which help
us to decide, first and foremost, which data should be measured and
which data are not required and, secondly, how best to support and
excite the structure so that all the critical data are observed and
accessed with a uniform rehability. These decisions are also referred to
as ‘Test Planning’ but the subtle difference between straightforward
test planning and virtual testing is that the latter implies that a higher
degree of analysis is involved in the process. ‘Planning’ can imply little
more than the test engineer making decisions on the basis of his/her
experience: the concept of systematic test planning is more rigorous and
thorough than that and thus warrants a more specific title — hence,
Virtual Testing.

There are three major aspects in which virtual testing can have
significant influence on the progress and prosecution of a modal test
and these are:

(i) assistance with the basic design of the test configuration: several
questions should be posed and answered such as whether the
structure should be tested free-free, or supported in some way?
whether the boundaries should be loaded or not? which modes of
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the tested structure are the most critical for the eventual
application? and so on.

(ii) optimisation of the set-up for the test which is finally specified to
be conducted, by selection of the best set of excitation, support
and response measurement DOFs; and

(iii) selection of the most appropriate post-measurement data analysis
algorithms which will be used to extract the required modal (or
other) data by assessment of the various alternatives using
representative simulated, rather than experimentally-measured,
data.

Time spent on these activities will generally be repaid handsomely by
more successful practical tests.

6.6.2 Test Planning for Model Validation
Virtual testing, as defined above, is particularly useful for certain
applications of modal tests, and especially that of using test data to
validate (correlate or update) theoretical models of given structures.
This is because in this application (as may also apply in others) there
already exists a theoretical model at the time that the test is being
planned and so this model can be used as the basis of the ‘rehearsal’ or
computer simulation upon which the test planning is conducted. In this
section we shall show some of the methods which can be used in this
way although, as usual in these relatively new concepts, there exist a
growing number of ideas and techniques which are being developed.

We shall consider essentially three issues which form the basis of
most test planning exercises:

(i) how/where to support the structure, so that the suspension has
negligible interference with the vibration properties;

(ii) where to excite the structure so that all required modes are
equally strongly excited (and any which are not required are not
excited); and

(iii) which are the response DOFs that are most important to the
application of the modal test results (this is a critical issue, as
discussed in Section 6.2 on model correlation).

6.6.2.1 Suspension location
The first of these issues can be readily addressed using a quantity
which is variously called the ADPR (average driving point residue) or
the ADDOF (average driving point DOF), the definition for each of
which is:
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.2
ADPRQ) = ADDOF-D(j)=£ (6.62)

r ®r

This function can be computed, using the initial theoretical model for
the test structure, and displayed as a contour plot, such as that
illustrated in Fig. 6.34. Clearly, regions where the average response
level is low will be better locations to attach whatever suspension is to
be used. Care must be taken to compute, display and consider motion in
all three translational directions since most suspension devices will
have influence in all of these but it is generally a straightforward
matter to select good and bad locations for supporting the structure so
as to minimise any unwanted influence on the structure’s dynamic
behaviour from the suspension.

Fig. 6.34 Example of ADDOF contour plot

6.6.2.2 Excitation location
The second consideration will usually be to the location of the best
point(s) to excite the structure so as to generate approximately equal
levels of response in the various mode of interest. Although, in general,
we shall be interested in all modes in a given frequency range, there are
several situations where we may wish to Emit response to certain
modes only: those which are symmetrical (as opposed to those which are
skew-symmetrical); horizontal modes (as opposed to those in the
vertical plane), for example. In order to ensure that a given mode is
excited, it is necessary to ensure that the excitation point is not at or
close to a nodal line and so this feature forms the basis of our criterion
for good and bad excitation points, the ODP (optimum driving point)
which is defined as :
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oDPQj=n 1^1 (6.63)

This function is in effect a measure of the cumulative observability of
all the modes in the selection and, once again, a contour plot can be
prepared for this parameter, based on the initial theoretical model
which is being validated — see Fig. 6.35. Plots such as this can be used

Fig. 6.35 Example of ODP contour plot

to select those points which are best suited to the task of exciting all the
modes of interest — essentially, those DOFs which have a large value of
ODP. However, this aspect of the test planning is not quite so
straightforward because there is a counter consideration which relates
to the risk of the exciter interacting with the structure to such an
extent that the measurement is compromised. For example, it was
shown in Chapter 3 how there is a strong shaker-structure interaction
effect when the apparent mass (or stiffness) of the structure is small by
comparison with the actual mass of the exciter and this effect makes it
very difficult to obtain a reliable force measurement just around
resonance. This phenomenon introduces a counter requirement for the
exciter to be placed close to a nodal line in order to minimise its
severity. At the same time, excitation by an impactor prefers driving
points which are not so mobile that they invite a double hit, or bounce
of the excitation device. Thus we must consider several, sometimes
conflicting, demands on the choice of site(s) for our excitation and to
this end a second test planning parameter can be introduced, the Non¬
optimum Driving Point, NODPQ):

NODP(j) = minr||<|)7r|) (6.64)

Once again, contour plots (Fig. 6.36) can be used to help visualise
preferred and undesirable regions of the structure and, together with
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the previous functions, the test engineer can be guided in his/her task of
selecting the best site(s) for applying the excitation.

Fig. 6.36 Example of NODP contour plot

6.6.2.3 Response locations
The third of these primary test planning considerations is to the
selection of those DOFs at which the response is to be measured. Once
again, there are a number of considerations but two major ones:
(i) which points should be measured so as to present a visually
informative display of the resulting mode shapes (usually by
animation)? and (ii) which DOFs are necessary in order to ensure an
unambiguous correlation between test and analysis models, and any
ensuing updating analysis which might be undertaken? The former
consideration essentially calls for a fairly uniform distribution of points
with a sufficiently fine mesh that the essential features of the various
mode shapes can be seen, preferably without aliasing effects. However,
the second consideration is the more critical in many cases for the
reasons which have been discussed earlier in this Chapter, in Section
6.2, dealing with the task of correlating two different models. In that
Section, it was shown how it is essential that the nxm submatrix of
measured eigenvector data (m modes, each defined at just n DOFs) is
non-singular. If this condition is not achieved, then there may be
serious difficulties encountered in seeking the correlated mode pairs
that are required for correlation and subsequent updating. In the limit,
some of the measured and computed data may have to be omitted from
the subsequent analysis because of uncertainties that can arise in
matching test modes with predicted modes: if this occurs, then it is
clear that those measured data are wasted. The essential question is to
determine which are the optimum DOFs from the point of view of
independence of the incomplete mode shapes of the selected modes,
(liven the analytical model, and the mode shapes that it generates, it is
possible to take a selection of DOFs and to test the resulting incomplete
mode shapes for the modes to be included by computing the AutoMAC
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of those data. If no significant off-diagonal terms are found, then the
selection of DOFs is basically a good one but if one or more off-diagonal
terms are of the order of 70% or more, then, at least for the modes in
question, considerable difficulty will be experienced in seeking to match
pairs of test and analysis modes.

The essential requirement is for more than a check on a proposed
set of measurement points: it is necessary to be able to specify which
DOFs should be included, and which are not necessary, from the point
of view of independence of the resulting necessarily-incomplete mode
shape vectors. A number of different algorithms have been proposed to
achieve this result, but the one of the more promising ones is based on a
technique introduced in 1991 [66] and known as ‘Effective
Independence’. This is summarised next.

It will be clear that if there are m modes to be included in the modal
test-derived model, then each mode shape must be defined at a
minimum of m DOFs, otherwise, the submatrix of eigenvectors will
necessarily be singular. However, the choice of these m DOFs is quite
critical and, for a number of reasons (the test model and the analysis
model are not expected to be identical; some of the critical DOFs may be
difficult to access for measurement, and so on), it is prudent to define
each mode shape at more than this minimum number of locations. Thus
we require a procedure that can rank the various DOFs in descending
order of importance in respect of this particular criterion of ensuring
independence of the restricted-length eigenvectors that will result from
the modal test. The basis of how this can be done is as follows: a
Predictor matrix, [A]OTX7y, and its associate, [E]NxN , are computed for
the incomplete set of m mode shapes that are to be identified:

[^Lxm — > [®lvx./V “ I®liVxzn Wmxm [®]mx2V (6.65)

The matrix [E] is then used to eliminate successively those DOFs from
the full set of A which contribute least to the rank of [£] , a process
which is continued until the rank of the truncated mode shape matrix
ceases to be of full rank (i.e. r < m). There are several variations which
can be introduced to speed up what is otherwise a rather expensive
computation (when m is typically a few tens, and N is likely to be tens
of thousands), but the essence of the method is shown as being a search
for the subset of DOFs which keep the selected modes mutually
independent, even when the number of elements in each vector is
severely restricted. Without such a specific algorithm, this
independence could only be assured by the inclusion of a great many
more DOFs in each mode shape description than is strictly necessary.
The results of applying this strategy to a practical structure shown in
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Fig. 6.37 can be seen in Fig. 6.5, which illustrates the suitability of two
sets of measurement DOFs for a practical aerospace structure: (i) a set
of 72 points chosen to give a fairly uniform coverage of the visible
surface of the structure and (ii) a set of 30 DOFs selected by the EI
algorithm just described. Fig. 6.5(b) shows the AutoMAC for the lowest
20 modes using the first set of 72 DOFs; Fig. 6.5(c) shows the
corresponding AutoMAC for the El-selected set of 30 DOFs and
Fig. 6.37 shows the corresponding set of measurement points on the test
structure. While it is clear that the latter set are very efficient, it is true
that they do not necessarily permit a good visualisation of the resulting
mode shapes (if that is a desired outcome). However, the alternative set
of more than twice as many measured data may reveal a more
accessible image but they fail to discriminate between two pairs of
modes — it will be difficult to differentiate between modes 5 and 6,
using these DOFs, and between modes 15 and 16. In applications of
model validation, such a failure may result in the inadmissibility of the
data for those four modes for further analysis — and that constitutes a
costly waste of testing time.

Fig. 6.37 Practical application of El-selected response DOFs

Further details of these methods can be found in Reference [67],

6.6.3 Other Applications of Virtual Testing
6.6.3.1 Selecting test configurations
While the above three tasks are routinely undertaken in the planning of
any modal test (if not always by the advanced methods outlined in the
preceding section), there are others which can, and perhaps should, be
considered next. These considerations relate mainly to the
configuration of the structure while it is being tested. It is
increasingly the case that modal tests are being performed on
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components or substructures to validate their respective theoretical
models, as well as (or instead of) the full structural assemblies that are
the end product of many designs. There are many reasons for this
trend; not least is the early availability of individual components which
makes validation of some components possible at a conveniently early
stage in the design process. However, it is clear that the dynamic
properties of a substructure as an isolated component will often be far
removed from those that it will experience when installed in an
assembly along with several other components. As a result, the
relevance of testing an isolated component is frequently questioned —
and not without justification. It is being realised that the modes of an
individual component that are critical to determining the dynamics of
an assembly are not necessarily the first in modes of that component
and so the questions which arise here are: which modes of the
individual component should be validated to ensure the validity of an
assembled structure’s dynamics? and how should the component be
configured in order to carry out a useful test on it in isolation? In a
number of cases, a solution to these questions may be found by adding a
non-trivial boundary to the tested component (and to the corresponding
theoretical model) so that it experiences loads at the interfaces which
are representative of those it will encounter in its final assembled form.
Virtual testing can play an important role in determining what these
boundary conditions should be and help to design a test which is both
convenient and useful.

6.6.3.2 Evaluation of data processing algorithms
As was mentioned earlier, another role that can be played by the virtual
test is that of evaluating the performance of the various data analysis
methods that are used: from curve-fitting used to extract modal
parameters from measured responses, to structural modification and
model updating applications. In all of these, it is possible to rehearse
the intended practical application using numerically-simulated data
which bear a close resemblance to the actual data that are expected to
be measured in the real test. Features such as modal density, levels of
non-linearity and of noise can be simulated and the proposed analysis
routines tested on these simulations so that the analyst can gain
valuable experience of which methods to use, and how to use them to
greatest effect

6.6.4 A Note on Using Theoretical Models to Simulate Test
Data

As a parting comment at the end of this work, it is appropriate to
include a cautionary note on the growing (and advocated) use of
numerical simulations to help us to understand how best to use our
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experimental facilities in undertaking modal tests that are both
increasingly reliable, efficient and useful. We have proposed the use of
numerical simulations derived from theoretical models of the actual
testpieces to be studied and this can, indeed, be a powerful way to
optimise our testing resources. However, we must at all times
remember that the simulations are based on an idealisation of the
actual behaviour of our structure(s) and that differences will be found
between the expectations and reality. When seeking to simulate these
real-life features (such as noise) we should endeavour to introduce such
effects into the models in as realistic a way as possible, and not simply
to add random noise to the smooth curves that are produced by our
theoretical formulae. Thus, if we plan to use numerically-simulated
FRF data to evaluate the performance of a given curve-fitting modal
analysis routine, we should not simply add x% random noise to the
otherwise correct response function: we should seek to introduce noise
to the function in a way which emulates the origin of noise in real life —
by adding the random perturbations to the original time histories of
excitation and response prior to their transformation to the frequency
domain. We can approach a more realistic seeding of noise into
simulated data by transforming the FRF to the time domain (to create
an IRF), then adding x% random noise to the resulting time domain
function before transforming back to the frequency domain.

Nothing can quite replace the real-life test!
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Notation

This list is extracted from the Notation for Modal Analysis and Testing,
[23], proposed and adopted in 1993. Also used by the Dynamic Testing
Agency, [12].

1. Basic Terms, Dimensions and Subscripts
x, y, z translational degrees of freedom/coordinates

(time-varying)
bi©<T> rotational degrees of freedom/coordinates

(time-varying)
f(t)

t
m
N

time-varying excitation force
time variable
number of included/effective modes
total number of degrees of
freedom/coordinates

n
s
r
j, k, I
P
00

number of primary/master/measured DOFs
number of secondary/slave/unmeasured DOFs
current mode number or matrix rank
integers
principal/modal coordinate
frequency of vibration (in rad.s"1; Hz)
V-i

2. Matrices, Vectors and Scalars
[ ]
{ }
( )

[ { }T

matrix
column vector
single element (of matrix or vector)
diagonal matrix
transpose of a matrix; vector (i.e. row vector)
complex conjugate (Hermitian) transpose of a
matrix

[/]i
[ r1

identity matrix
inverse of a matrix
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[ ]+
[ ]*; { }*; ( )*

generalised/pseudo inverse of a matrix
complex conjugate of matrix; vector; single
element

[tfb [V]
[s]

matrices of left and right singular vectors
rectangular matrix of singular values (oj is

singular value)
[T]
[Ab] ’ [Ak]
II Up
e

transformation matrix
reduced, expanded matrix
p-norm of a matrix/vector
value of a norm/error/perturbation

3. Spatial Model Properties
[M], [Zf], [C], [D] mass, stiffness, viscous damping, structural

(hysteretic) damping matrices
[^b- analytical/theoretical/predicted/FE mass, ...

matrix
M^] , ... experimentally derived/test mass, ... matrix
AM] = mass, ... error/modification matrix
Win : filial

•.. . ' • • , •• partitioned mass, ... matrix
[[M]21 : [M]22

4. Modal Properties
cor
hr
mr
kr
Cr

natural frequency of mode (rad.s-1)
viscous damping ratio of mode
structural damping loss factor of mode
modal/effective mass of r^h mode
modal/effective stiffness of mode
modal/effective viscous damping of r^h mo(ie
(proportional damping)

Q
5
[^r]
[T]
[$]

Q factor
logarithmic decrement
eigenvalue matrix
mode shape/eigenvector matrix
mass-normalised mode shape/eigenvector

Mr >

V/r- fir r M :
[0Lvx2iV = ••• :

matrix
mode shape/eigenvector
element of mode shape/eigenvector

M 1 eigenvector matrix for viscously
damped system

MXr] : [vPMP
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^0^(2A,X1)
Mr rvn mode shape/eigenvector for viscously

damped system

5. Response Properties
[H(«))] Frequency Response Function (FRF) matrix
H (o) individual FRF element between coordinates

j and k (response at coordinate j due to
excitation at coordinate K)

{H (co)}^ feth column of FRF matrix

Response Parameter Response/Force FRF Force/Response FRF
^(o)

Displacement Dynamic Compliance
or Receptance [a(co) ]

Dynamic Stiffness

Velocity Mobility [Y(<b)] Mechanical
Impedance

Acceleration Accelerance or
Inertance [ A((d)]

Apparent/Effective
Mass

r^Jk —
[R]

N

^jk = 22 rAjk/®r
r=w+l

[h(0]
hjk(t)

modal constant/residue
residual matrix

high - frequency residual for FRF between
jandk,(Hjk^

Impulse Response Function (IRF) matrix
individual IRF element between coordinates j
and k (response at coordinate j due to
excitation at coordinate k)
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APPENDIX 1

Use of Complex Algebra to
Describe Harmonic
Vibration

If

x(t) = x0 cos(co t + <|>)

we can write this as

x(t) = Re^Xe^ ) or, usually, x(t) = Xeieit

where X is a COMPLEX AMPLITUDE (independent of time) containing
information on MAGNITUDE and PHASE

X = xoe^
(where x0 is REAL and is the magnitude of the sine wave and (|) is its
phase relative to a chosen datum). Thus:

x{t) = Re(xoel^‘+^)
= Re(x0 cos((o t + <|))+ i x0 sin(<ot + <|>))
= x0 cos(cot + <[))

Time derivatives are easy:
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v(t) = x(t)= Ref—Xe™*
{dt

= Re^iaXe^1^ Re(icoxoe^<n<+^)
= Re(icoxo cos(a)i + <0 — co x0 sin(cot + (j>))

Thus:

x(t) = —rox0 sin(<o t + (0

and also:

x(t) = -co 2 x0 cos(cot + <|>)

It is also relevant to note that the ratio of two sinusoids of the frequency
can also be expressed conveniently in complex notation. Suppose that
we have two sinusoids, x(i) and y(0 , both of which are described
individually in the form described above, and we wish to describe their
ratio, R. We may therefore write:

xosin(cof + (|>x)_Xe^
y0 sin(cot + <|>^) ye^

so that

arg(f?) = (<|)x J
This feature is used throughout the book and is the basis for describing
frequency response functions (FRFs) as complex functions of frequency.
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APPENDIX 2

Review of Matrix Notation
and Properties

Notation and Definitions
Column vector (N rows x 1column)

lxWxl -

*1
x2

X^vJ

Row vector (1 row x IV columns)

x2 *jv}

Rectangular matrix (N rows x M columns)

bn b12 ... blM
^21 b22 ... b2M

bNl bN2 ^NM
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Square matrix (element row, column)

«11 «12 ••• a\N

- «21 «22 .. a2N

_am aN2 • aNN_

Diagonal matrix

10 0 ... 0
0 2 0 ... 0

0 0 N

HvxAr -

Transposed matrix

=bji

(ii) Properties of Square Matrices
Symmetric matrix

WwxAr = IXLvx./v
Gy = aji

Inverse

‘Unit Matrix’



(iii) Matrix Products
Matrices must conform for multiplication:

WnxmMmxP ^CLvxP
Generally,

except for

.Also:

and

Symmetry

MnxN I5kxiv = [c1nxN

Symmetric NOT necessarily Symmetric

But

[bF[a][b]=[d]
Symmetric Symmetric

525
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-(iv) Matrix Rank
The product

faWl WlM = WjVxTV
2<j>l <|)1<j)2 ...

2
[a]=

2

where [A] has order N but rank 1.

(v) Generalised or Pseudo Inverse
Given equations

MtVxI = [ALvxAT MaM
we can solve for {y} by:

MM^M
However, sometimes equations are Over-determined by redundant
data. Then,

MaM = IXLvxM MmxI
where N > M and we cannot solve directly (since [B]1 does not exist)
so:

MLxN M?Vxl - [^ImxAT [bLvxM MmxI
from which

MmxI T
MxN Ma/\1

or

Ma/xi - MmxN Mam.
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[B]+ is the generalised or pseudo inverse of [B] and gives a least¬
squares solution of the redundant equations. This generalised inverse
is defined as:

It can be noted that it is a property of the generalised inverse matrix
that:

MmxN [BkxM -kLfxM
but, equally, it must be noted that the alternative combination is not so
useful because:

[BLvxMMfxfl *kkxiV

It can be seen that a similar set of characteristics can be developed
for rectangular matrices which have the other aspect: i.e. for which
N <M . However, matrices of this form are rarely encountered in
modal testing and analysis and so they will not be considered
further here.





529

APPENDIX 3

Matrix Decomposition and
the SVD

A3.1 INTRODUCTION
At various stages in the book, reference has been made to a matrix
procedure known as the Singular Value Decomposition (universally
referred to simply as the SVD). This is simply the general version of a
basic property of all matrices: that any matrix can be decomposed into a
set of standard matrices, such as the eigenvalue and eigenvector
matrices, often to considerable advantage. The singular values and
singular vectors are a more general version of the common eigenvalues
and eigenvectors, as is explained below.

A3.2 EIGENVALUE DECOMPOSITION
By way of introduction to the SVD, we shall first recall various
relationships between the spatial model and the modal model of our
dynamic system which are defined in terms of the eigenvalues and
eigenvectors. It can be recalled that:

= H and

where the symbols meanings are as used throughout the text, with Xr
as the eigenvalue (or square of the natural frequency of mode r: co r ). It
can therefore be seen that the single system matrix, [A] , formed by
combining the mass and stiffness matrices into a single quantity, can be
written as:

W-M 1K- W7, )=MUM1
or, using the unitary properties of the eigenvector matrix, we can write:
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which is a general statement of the eigenvalue decomposition of matrix
[A] and applies to all symmetric square matrices.

This decomposition can be shown to extend to non-symmetric
square matrices for which case two types of eigenvector — left-hand
and right-hand, as encountered in the Section concerned with rotating
structures (2.8) — are applicable, and in this case the corresponding
decomposition can be written as:

IXnon-sym/n ]= LH ][^r K1®* RH ]

A3.3 SINGULAR VALUE DECOMPOSITION
The most general version of these matrix decompositions is that which
applies to a rectangular matrix, [B] , which will be taken to be of order
NxM where N > M (although this is not a strict mathematical
requirement, it is the usual version of rectangular matrices
encountered in this subject). In this most general case, the relevant
decomposition is called the Singular Value Decomposition (SVD) and is
expressed as:

= MvxAr [°LvxM l^&xAf
where [U] and [V] are the left- and right- singular vectors,
respectively, and [o] is the diagonal matrix of singular values. The
form of a diagonal rectangular matrix is shown below:

CT1
0

0

CT2
... 0
... 0

... 0

... 0

ct1vxM =
0 0 ... ar ... 0

0 0 ... 0

0 0 ... 0 ... 0

It can be shown that the M squared singular values (ar)2 are identical
to the M eigenvalues of the matrix product: ([B]^ [B])^xm .

The SVD has special relevance in the field of modal testing because
of the rectangular form of many of the matrices which are constructed
from measured data. It is standard practice, when using measured data
to identify parameters in a model — such as is done in every curve-fit
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procedure — to use the excess of test data to construct a set of over¬
determined equations and to use this feature to obtain smoothed, or
averaged results for the required model parameters. Conventionally,
this approach results in more equations (rows) than unknowns
(columns); hence the rectangular matrices (in which the number of
equations, N, is greater than the number of unknowns, M). We have
already seen the use of the generalised or pseudo inverse as a matrix
form of least-squares curve-fitting to obtain a ‘best’ averaged result.
However, in problems with many variables, there may be some
difficulty in ensuring that all the measured data are independent, and
this is an important requirement because if it turns out that there are
actually fewer independent equations than there are unknowns, then
the problem becomes under-determined and a unique solution is not
possible. In such circumstances, it becomes important to be able to
establish the degree of independence of the various items of measured
data, and this is something that the SVD is ideally suited to do.

A3.4 MATRIX RANK AND THE SVD
The singular values are usually extracted and presented in descending
order of magnitude ( > cr2 ...> ar ... > ). The rank of a matrix is a
measure of the independence of the rows and columns and, like the
condition number (which is the ratio of the highest and the lowest
eigenvalues of the matrix), the rank directly reflects its non-singularity.
If all the singular values of a matrix [B] are non-zero, then the matrix
is of full rank (i.e. M), is non-singular and is essentially well-
conditioned from a numerical processing standpoint. If, on the other
hand, one of the singular values is ‘zero’, then in this case the matrix is
rank-deficient, has a very high condition number and is singular. In
practical applications using real measured data, when singular values
become very small — typically of the order of 106 or 1010 times smaller
than their neighbours — they can be considered to be ‘zero’. The actual
threshold to be used is often the subject of a ‘calibration’.

A3.5 MATRIX INVERSION AND THE SVD
It is often found that the SVD is an invaluable aid in the various matrix
inversions that we may be required to perform as part of one of the
modal analysis procedures. Given that

[slvxM = MnxA? HaTxM MmxM
we can see that the generalised inverse of [B] can be expressed as:

IMfx.V = [Vl.MxM MmxN MJxN = WmxM HmxN MnxN
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once again using the unitary properties of the singular vectors. The
diagonal elements of [o]+ are simply obtained form the inverses of the
corresponding diagonal elements in the matrix of singular values but a
problem is encountered when any of these latter quantities are ‘zero’.
This, of course, is exactly the situation where the matrix to be inverted
is singular and we are simply encountering this fact in one of the steps
of the SVD method of obtaining a generalised inverse. Using the SVD
does not remove the essential problem presented by a singular matrix
but it can provide a way to proceed when such an impasse is reached.
What is done in the case of one or more zero singular values in the
original matrix, [B] , is to replace any element in the [a]+ matrix which
would become infinite if defined by (l/o) with a zero. In this way, the
numerical condition obstacle to computing an inverse is removed and
we may proceed with a solution to the task at hand. Of course, there is
a ‘cost’ associated with such a process. A solution has not been obtained
without some concession being made, reflecting the fact that the reason
why the original matrix was singular was because the problem that it
described was essentially ill-posed (i.e. impossible). The apparent
removal of the singularity will often have been achieved by reducing the
order of the problem by one or more degrees. While we may certainly
benefit from the assistance offered to many difficult computation tasks
by this SVD technique, we must equally well understand the
compromise that has been made in order to obtain a solution.

A3.6 EXAMPLE OF USE OF SVD IN FORCE
DETERMINATION

This type of use of the SVD is best illustrated by a simple example, and
the one presented here relates to the application of force determination,
discussed in Section 6.5. In this application we seek to determine the
excitation forces which are applied to a system from observation of the
responses they produce, together with knowledge of the system’s
dynamic properties in the form of its FRF matrix. The basic
relationship involved can be expressed simply as:

For the particular case where:
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1

[H]=

5

6 11
7 12
8 13
9 14

10 15

it is found that:

5
{X}= 5

5
5

If we now consider the inverse problem and seek to deduce the three
excitation forces from knowledge of the system matrix, [H] and the
responses, {X} , using the standard generalised inverse formula
presented in the previous appendix to invert the above equation to solve
for {F} , we find that the sought force vector is:

(■-0.47'
{F}= ]+ 0.31 •

+ 0.31

which is not only different to the one presented in the problem
definition but is not capable of reproducing the response vector, {X} ,
which has been used in its derivation:

‘1
2

6
7

11’
12 [-0.47'

4.84
5.00

5
5

{x}= 3 8 13 • +0.31 • = • 5.16 •* • 5-
4 9 14 [+0.31 5.31 5
5 10 15 5.47 5

If we now use the SVD to compute the generalised inverse of [77] , we
find that one of the three singular values is extremely small when
compared with the other two, and we conclude that this original matrix
is singular (indeed, inspection of the matrix reveals that the third
column can be derived directly from the second and the third).
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-0.20 +0.81 +0.41
-0.52 +0.26 -0.82
-0.83 -0.38 _0.41

1 6 11' -0.36 -0.69 +0.56 .. ..' "35.13 0 0
2 7 12 -0.40 -0.38 -0.64 .. .. 0 2.465 0
3 8 13 = -0.44 -0.06 -0.00 .. .. 0 0 2.84 xlO-15
4 9 14 -0.49 + 0.25 -0.33 .. .. 0 0 0
5 10 15 -0.53 + 0.56 _0.41 .. .. 0 0 0

Proceeding with the SVD-based inversion as described above, we find
that a satisfactory solution for the excitation forces can be obtained and
that it is:

0.5
o

-0.5
resulting in

5

Now, it is necessary to understand how this solution has been obtained,
and what — if any — conditions are attached to it. Indeed, a solution
seemed impossible from an earlier direct analysis.

What has happened in this solution is that the problem has been
reduced from one with three unknowns to one with just two. This is the
direct implication of the discovery that the original [H] matrix was
rank-deficient, and of the actions that were taken using the SVD
approach to inverting the matrix. By this method, we have found a
solution for the three unknown forces but not the solution. Indeed,
there is no unique solution: that is the sense in which the problem was
ill-posed at the outset. The non-uniqueness becomes evident when we
realise that an infinite number of solutions can be found: for example,
the vector:

0

is also a possible solution, as is
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fl.51
{^3}= -4

2.5

It is easily seen that many combinations of these solutions can also
satisfy the requirement of the set problem.

So what is it that results in this slightly unexpected situation? The
clue to the answer to this question lies in the zero singular value of
[H]. That feature indicated that the system described by this FRF
matrix has only 2 degrees of freedom, and not 3 as implied by the
statement of the problem. As such, a unique solution for three unknown
forces is clearly an impossibility, even though a solution is possible, as
we have seen. The physics behind this situation, which is typical of
many encountered in various aspects of modal analysis, can be
explained by a simple practical interpretation of the set problem,
illustrated in the accompanying figure. Here we see a system with just

2DOFs, but one whose motion is described using several more DOFs
than that. In the system shown here, it is perfectly feasible to calculate
the response of the system at 5 degrees of freedom, as shown, when it is
subject to three forces, also shown. There is no difficulty in determining
these responses in this case. However, if we try to undertake an inverse
analysis, we encounter difficulties. The motion of the system — any
motion — can be determined by a single force together with a single
moment, both applied through the centre of gravity of the mass. These
constitute the excitation in the 2 degrees of freedom that the system
possesses. The complication arises in the set problem because it is
possible to generate these same excitation conditions using any number
of combinations of three or more forces. As long as the net effect of
these three forces is equal to the single force and the single moment,
they will always generate the same response. Now we can see the origin
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of the non-unique solution yielded by the SVD solution to the set
problem.

The power of the SVD approach is that it can determine the true
order of the problem, and this is already a valuable contribution. As in
this case, it can also go further and reveal a solution where none was
available by other means. It must be noted that the solution thus
obtained is not the solution, but just one of many. In fact, it yields the
force vector which has the minimum norm (sum of the squares of the
elements). Unfortunately, there is no particular reason why this
particular solution should be any more likely to be close to the true
solution than any other. But, still, it is a solution.
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APPENDIX 4

Transformations of
Equations of Motion
between Stationary and
Rotating Axes

In Chapter 2 we have shown how the coordinates in the stationary
frame of reference and those in the rotating frame of reference are
linked by a ‘simple’ transformation, [71]:

c -s |Xd| , |Xp I jc si fx1 1 and 11= 1
s c J J I-8 GJ 17

where

c = cos(Qt) ; s = sin(Q4)

so that:

; W = [7T(x}

In seeking to transform equations of motion between one of these sets of
coordinates and the other, it is useful to note the following properties:



= [T1]{x}+2Q[T2]{x}-Q2[T1]{x}
and the following:

^[o P °1 and hPf ° %]=[ °o aJ l 1j L-b oJl 1j [-b o
[° and Wf0-A OJ L L-B oJl 1J L 0 -B
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APPENDIX 5

Fourier Analysis

In this appendix, we list some of the more important features of Fourier
Analysis, as required for most modal testing applications. These will be
summarised in three categories:

(i) Fourier Series
(ii) Fourier Transform
(iii) Discrete Fourier Series (or Transform)

All share the common feature of being the means of describing a time¬
varying quantity in terms of a set of sinusoids and, conversely, of
reconstituting a time history from a set of frequency components.

Only a summary will be included here. For a more detailed
treatment, refer to a specialist text such as Bendat and Piersol
(Reference [34]) or Newland (Reference [33]). However, it must be noted
that there exist slight differences in definition and terminology which
can make cross referencing from one source to the other somewhat
confusing!

(i) Fourier Series
A function x(i) which is periodic in time T can be represented as an
infinite series of sinusoids:

00

x(0 = |ao + ^805711 + bn sin“n
n=l

where

27rn

in which the coefficients are given by



540

T

o

2
T

an = T W)
o

cos co n tdt 2
T

bn = T o
tdt

Alternative forms
(a)

x(t) = C0 COs(°M + K)
n=l

where

cn ~ - tan —I an
(b)

where

T

X^fctye-^dt
0
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NOTE:

X_n=< ; Re(X„) =^Im(Xn) =-^
lx«l-v£»

(ii) Fourier Transform
A nonperiodic function x(0 which satisfies the condition

oo

||x(t)\dt < oo

— oo

can be represented by the integral:

00

x(i) = J(A(®)cosco t + .B(co)sin co t)da
— oo

where

00 00

A(co) = — x(i)coscoidt ; B(co) = — x(i)sinco£di
nJ nJ

— 00 —00

Alternative form
The alternative complex form is more convenient, and familiar, as:

00

x(t)= jA/co^dco

where
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oo

X(C0) = J_ ^(fie-^dt
—oo

NOTES:

Re(XH) =^Im(X(a>)) =^also

X(-(o) = l‘(o)

(iii) Discrete Fourier Series/Transform (DFT)
A function which is defined only at N discrete points (at t = ,
k =1, N) can be represented by a finite series:

N (iV-1)— or L

*OJ=ta) = |ao+ X, V 1Vn=l x

where

2 1 2tc nk . 1 2n ti k; an=^L^cos^“ ; ^=^Xxksm-^~k=i k=i ^=1

Alternative form

N-l

n=0

where
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1 N

;v
6=1

NOTE:

^■N—r =

Notes on the discrete Fourier Transform
(a) This is the form of Fourier Analysis most commonly used on

digital spectrum analysers.
(b) The DFT necessarily assumes that the function x(i) is periodic.
(c) The DFT representation is only valid for the specific values x^

( x(t) at t = ) used in the discretised description of x(t) .
(d) It is important to realise that in the DFT, there are just a discrete

number of items of data in either form: there are just N values
Xh and, correspondingly, the Fourier Series is described by just
N values.

Example
Let N = 10.

In the time domain, we have

*1. x2, ..., x10

In the frequency domain, we have

a0 , alt a2, a3 , a4, a5 , b} , b2 , b3, b^

or

X0(=Real) , Re(Xx) , Im^) , Re(X2) , Im(X2) ,

Re(X3) , Im(X3) , Re(X4) , Im(X4) , X5(=Real)

(NOTE: X5 = Real because X10_5 (=X5)=
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Index

Accelerance (see also: FRF) 35
Accelerometers (see: Transducers)
Admittance 36
Aliasing 213

anti-aliasing filters 215
Analysers (see: Frequency Response Analyser; Spectrum Analyser)
Analysis, Modal (see: Modal analysis)
Antinode 259
Antiresonance 123, 125, 127
Apparent mass (see also: FRF) 36
Applications of Modal Testing (see also: Test, Modal) 415-515

comparison of experiment and prediction 416
comparison of modal properties 417
comparison of response properties 437
connected structures (see: Coupled structures)
coupled and modified structure analysis 469
force determination (see: Force vector)
modified structure analysis (see: Coupled structures)
model updating (see: Updating of FE models)
response prediction (see: Response level prediction)
test planning (see: Test)

Argand diagram plot 46, 393
Asher’s method 382
Asymptotes

in FRF plots 292
Averaging 226

impacts 253
modal property estimates 375
overlap 227

Bias error 239
Bode plots of FRF 36
Boundaries

of test structure 170
perturbed boundary conditions 173

Burst excitation signals 245

Calibration 254
Characteristic phase lag 72
Chirp excitation 249
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Circle-fit modal analysis 309
Coherence 237, 276
Comparison (of models: definition) 448
Comparison of experiment and prediction (see: Applications)
Complex

algebra for harmonic vibration 521-522
eigenvalues, eigenvectors 66, 88
natural frequency (see also: Frequency) 30, 64, 66, 75, 102
mode (see: Mode, complex)

Complex exponential modal analysis method
Compliance 36
Convolution (see: Response analysis, time domain)
Correlation (of models: definition) 448
Correlation functions

autocorrelation function 138
cross-correlation function 139

Coulomb friction effects 159
Coupled structure analysis 469-499

basics of 469
concepts and definitions 471
methods 469-499

modal 474, 492-499
response 475-492

general 476
sensitivity properties 488
simplified 484

Critical damping ratio 30, 64, 75
Cross FRF 121
Cross-correlation function 139
Cross-spectral density function 139
Cubic stiffness non-linearity 156, 366

Damping
capacity 32
critical ratio measure 75
difficulties, in modal analysis 2
external 82, 84, 98
friction 32
hysteresis 33
hysteretic (see: damping, structural)
internal 82, 98
loss factor, measure 34, 67
measurement of 312, 317
modal 63, 67, 75
models of 32-33
plots in SDOF modal analysis 317
proportional 62-65
structural 32, 66-74
viscous 30

Degrees of Freedom (DOF) 28
rotational DOFs (see: Rotational DOF)
statistical 226

Direct FRF 121
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Discrete Fourier transform 210
Discretisation errors (see: errors)
Double Modes 57, 108-112, 377
Drive rod 181
Duhamel’s method 135
Dynamic flexibility 36
Dynamic stiffness 35

Eigenvalues (see also: natural frequencies)
damped systems 66
undamped systems 51
rotating systems 87, 97, 102

Eigenvectors (see also: mode shapes)
damped systems 66
left-hand 88
right hand 88
undamped systems 51

Equations of motion
SDOF system 29, 30
LTI (linear time-invariant) systems 101
MDOF systems 50, 63, 66, 74, 85, 96, 99, 102
rotating systems 80-99
transformation between stationary and rotating axes 537

Errors (of models, for updating-see also: Model) 466
Excitation

base excitation 192, 402
devices 176

connection of (stingers, push rods) 181
electromagnetic 177
electrohydraulic 180
hammer 186
impactor 186
magnetic 189
on rotating shafts 183
step relaxation 188
location 509
method of application 174
multi-point

general considerations 271
multi-phase stepped sine (MPSS) tests 272
multi-point random tests 273-275
normal mode testing 272

signal type, analysis for (see: Force vector)
burst excitation tests 245
chirp excitation tests 249
control of force or response level 268
effects on non-linear structures 266
impulsive excitation tests 249
periodic excitation tests 235
random excitation tests 236
stepped sine testing 230
slow sine sweep testing 231
transient excitation tests 245
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Expansion (of mode shapes) 384
Exponential window 217

Force determination 500
Force Gauge (see: Transducers)
Force vector

determination from responses 500, 532-536
general excitation 71
out-of-balance excitation 91-95
pure mode,-excitation 71, 72, 272

Forced vibration analysis, general response 71, 77
Fourier analysis 539-543

discrete Fourier transform (DFT) 210, 542
fast Fourier transform (FFT) 212
integral transform 541
inverse transform 135
series 539

Frames of reference
rotating 82, 95-99
stationary 82

Free vibration analysis, response 31
Frequency

natural (also referred to as ‘pole’; see also: eigenvalue)
complex 30
of damped systems 30, 64, 75
forced 117-118
free 29, 51, 64, 75, 87, 97, 117-118
of undamped systems 29, 51, 67
of rotating systems 87, 97

Frequency Response Analyser 207
Frequency Response Function (FRF)

alternative versions of 36
accelerance 35
apparent mass 36
dynamic stiffness 35
inertance 35
mechanical impedance 35, 119

34, 119
receptance 30

cross 121
definition of 29
derivation of 29, 31

from periodic vibration 134
from random vibration 138-143
from transient vibration 137

direct 121
enhanced (EFRF) 301
expressions for 31, 34, 60, 64, 70, 79, 85, 91, 103
higher-order 159
inverse 44, 318
measurement

using different excitation signals 227-254
using SLDV 276
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non-linear systems 158, 160
plots

asymptotes 292
MDOF system 58-61, 70, 121-132
MDOF rotating system 92
SDOF system 36-47
Nyquist plots 48, 293
properties of SDOF plots 47-49
skeletons 293, 405-413

point 121
ratios of (see: transmissibilities)
regeneration of 397
synthesis of 397
transfer 121

Functions
autocorrelation 38
cross correlation 39
(see: frequency response function)
(see: mode indicator functions)
(see: principal response function)

Global modal analysis methods 89, 342, 355
Grounded support 171, 292

effect on FRF skeleton 406
Gyroscopic effects

effect on equations of motion 5

Half-power points 307, 313
Hammer excitation 169, 186, 245
Hanning window 217
Hilbert transform 269
Hysteretic damping model 32

Ibrahim Time-Domain method 355
Impact tests

general 86-188
multiple-reference impact tests (MRIT) 276

Impedance head (see: transducers)
Impedance, Mechanical (see also: FRF; mechanical impedance) 35
Impulse Response Function (IRF) 136, 350
Incompleteness of models (see: models)
Inertance (see also: FRF) 35
Inertia mass 184
Inverse Fourier Transform (see: Fourier transform)

Kidder’s method 385

Laser transducers (see: transducers)
LDV (see transducers)
Leakage 212, 215, 239
Lightly-damped structures 239, 253

modal analysis of 339
Localisation of errors (definition) 449
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Logarithmic scales 38

Mass
apparent (see also: FRF) 36
cancellation 257
effective 56
generalised 56, 57
modal 53, 56, 67, 77

Mass-normalised eigenvectors 53
Matrix

condition, ill-condition 504
damping 10, 63, 66, 74
decomposition (inch SVD) 529-536
eigenvalue, eigenvector 51, 66, 78
mass 8, 50
notation 523-527
rank 526, 530
stiffness 8, 50
symmetric, non-symmetric (see: symmetry)

MDOF (multi-degree-of-freedom)
system

analysis of
undamped 49, 58
proportionally-damped 62-65
arbitrarily-damped, structural 66-74
arbitrarily-damped, viscous 74-80

plots of FRF data (see: FRF)
modal analysis method (see also: modal analysis) 331, 349

Measurement
data consistency 167
data reciprocity 167
data repeatability and reliability 167
system 168

Mechanical Impedance (see also: FRF) 35
MIMO (Multi-input-multi-output) methods 289

derivation of FRF data using 143
excitation methods 271
multi-phase stepped sine (MPSS) 272
multi-point random (MPR) 273
multiple reference impact tests (MRIT)276

Mobility (see also: FRF) 35
Modal analysis methods 287

frequency-domain 303-349
global 342

rational fraction polynomial (GRFP) 343
global SVD method 345

MDOF
non-linear least-squares (NLLS) 333
rational fraction polynomial (RFP) 335
lightly-damped structures 339

non-linear structures 359-370
amplitude-dependent modal properties 363

simple 127
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SDOF 303-331
peak amplitude 306
circle-fit 314
damping plots 317
line-fit 318
non-linear modal analysis 359
refined method 330

time-domain 349-359
complex exponential methods 349
Ibrahim time domain (ITD) Method 355

Modal assurance criterion (MAC) 422
AutoMAC 428
CoMAC 434
FDAC 442
FMAC 433
FRAC 442
IMAC 431
MFAC 443

Modal circle 309
Modal constant (also ‘residue’) 60, 125
Modal model (see: Model, modal)
Modal scale factor 424
Modal test (see: Test, modal)
Mode

complex
conversion to real 381
displays of 113-114
measures of 113
origins of 66, 115

damped system 71
displays 114
double, multiple 57, 108-112, 377
normal, natural 10
indicator functions (MIFs) 300

complex 300
real 302
multivariate 302

mass-normalised 53
pure mode excitation (see: force vector)
rigid body 170
rotating system 87-89
shape 52

display 113
expansion 384

undamped system (associated) 72
Model

analytical (definition) 447
comparison (definition) 448
correlation (definition) 448
experimental (definition) 447
errors (for updating) 466
incomplete 144-149, 385, 492
modal 25
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construction from base excitation 402
display of 391

interpretation of displays 394
requirements to construct 373

order 290
reduced
refinement 380

complex-to-real 380
expansion 384
reduction 389

response 26, 396
sensitivity

FRF 153
modal 150

spatial 25, 404
requirements to construct 405
construction form mobility skeletons 405-413

updating (see: Updating of FE models)
valid, validation (definitions) 447, 449
verification (definition) 449

Modified structures (see Applications)
Multi-curve fits 342
Multi-point excitation 271

Natural; frequency
Nodes 107, 109, 113
Non-linear least-squares modal analysis (see: Modal analysis)
Non-linearity

analysis of non-linear systems 154
detection of non-linear behaviour 266
general 159
identification of non-linear effects 268
modal analysis of non-linear systems 359-370
of stiffness 156
of damping 159
types 159

Notation 21, 517-519
matrix notation 523-527

Nyquist frequency 212
Nyquist plot ( see also : FRF - plots)

Operating Deflection Shape (ODS) 71
correlation using 443
measurement using SLDV 276-286
prediction as response 499

Orthogonality 53-54, 75-77
Orbits 87
Out-of-balance excitation (see: Force vector)

Parameter extraction (see also: modal analysis) 287
Peak-amplitude (peak-picking) method 306
Periodic random excitation 241
Periodic vibration
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analysis for 133
excitation 235

Piezoelectric transducers 194
Point FRF 121, 373, 397
Pole (see: natural frequency)
Principal response functions (PRFs) 296
Proportional damping (see: Damping)
Pseudo inverse matrix 273, 302, 346, 386, 460, 500, 526
Pseudo random excitation 235
Pulse excitation 249
Pure mode excitation (see: Force vector)
Push rod 181

Quality checks
of measured data 165
of modal models 379
using SVD 295

Random vibration
analysis for 138
excitation 236
multi-point excitation 273
periodic random 241
pseudo-random 235

Rational Fraction Polynomial (RFP) Method (see: Modal Analysis)
Rank (of matrix) 526
Rapid sine sweep 245
Receptance (see also: FRF)
Repeated roots (see: Mode)
Residue (see also: modal constant) 60
Residuals 325

importance of in FRF regeneration 438
in coupled structure analysis 492, 496
in modal analysis 325
calculation of 328
representation as pseudo modes 329

Resonance 40, 42
Response analysis

frequency domain 135
periodic excitation 134
random excitation 138
time domain 135
transient excitation 137

Response level prediction (see also: Operating deflection shapes)
from modal model 499

Response locations (for transducers) 510
Response function (see also: Frequency response function)

(see also: Impulse response function)
method of model updating 462
methods of coupled structure analysis 475

Rigid body modes 170
Rotational DOFs (RDOFs)

measurement of 260-264
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significance of 260, 492
Rotor (see: structures)

SDOF (Single Degree of Freedom)
modal analysis methods 303-331
system 28

analysis of 29
properties of 29-32
plots of FRF data 34

Sensitivity
of modal properties 150-154
of FRF properties to location 441
method of model updating 458

SEREP 387, 471
Shaker 174
Signal

fidelity 166
processing

aliasing 213
averaging 226
filtering 218
digital 209
DFT 210
leakage 215
resolution 222
windowing 216
zoom 224

quality 166
SIMO (Single-input-multi-output) method 289
Singular value decomposition (SVD) 529-536

use in quality checks of FRF data 295
modal analysis method 345

SISO (Single-input-single-output) method 289
Skeletons (see: FRF plots)
Spatial model (see: model, spatial)
Spectrum analysers 209
Spectral density

auto (power) spectral density (PSD) 139
cross spectral density (CSD) 139

Stator (see: structures)
Stiffness

local 174
modal 53, 56, 67, 77
dynamic (see also: FRF) 35
effective 56
generalised 56, 57

Stinger (see: push rod)
Strain responses 502
Structural damping 32
Structures

axisymmetric 107, 109
disc-like 106, 111
non-linear (see also: non-linearity)
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analysis of 154
testing of 265

periodic 107
rotating

dynamic analysis of simple systems 80
general case 106

rotor (in rotor-stator system) 85
stator (in rotor-stator system)

symmetric 86
non-symmetric 89

symmetric 58
test

support, boundaries 170, 508
excitation location 509

Superposition (see: Response analysis, time domain)
Sweep rate 232
Symmetry, asymmetry

axisymmetric structures (see also: structures) 107
of structures (see also: structures) 102
of matrices 80, 525
skew symmetry 86

Synthesised FRF 397

Terminology 21, 416, 447-449
Test, Modal

applications of 2
levels of 164
planning 164, 506-515

Transducers
accelerometers 195

attachment of 198
force gauges 194
impedance heads 196
laser transducers 202

LDVs (laser Doppler velocimeter) 202
scanning LDV 205, 276-86

Transfer FRF 121
Transient vibration

analysis for 134
effect of 231
excitation 245

Transmissibilities 400

Undamped systems
analysis of 29, 49, 85
mode shapes 51
natural frequencies 51

Updating of FE models 446-469
basic concepts 450
methods of updating

direct matrix updating (DMU) 453
eigendynamic constraint methods (ECM) 455
error matrix method (EMM) 454



562

inverse eigensensitivity method (IES) 458
response function methods (RFM) 462

Validation of Models (definition) 449
Verification of Models (definition) 449
Virtual Testing 506-515
Viscous damping 30, 74

Waves
stationary 113
travelling 113

Wax attachment 198
Windows 216

cosine taper 217
exponential 217
Hanning 217

Zoom 224, 250
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